
tsfresh Documentation
Release 0.10.0

Aug 17, 2017

Contents

1 Contents 3

2 Indices and tables 79

3 Acknowledgements 81

Python Module Index 83

i

ii

tsfresh Documentation, Release 0.10.0

This is the documentation of tsfresh.

tsfresh is a python package. It automatically calculates a large number of time series characteristics, the so called
features. Further the package contains methods to evaluate the explaining power and importance of such characteristics
for regression or classification tasks.

You can jump right into the package by looking into our Quick Start.

Contents 1

tsfresh Documentation, Release 0.10.0

2 Contents

CHAPTER 1

Contents

The following chapters will explain the tsfresh package in detail:

Introduction

Why do you need such a module?

tsfresh is used to to extract characteristics from time series. Let’s assume you recorded the ambient temperature around
your computer over one day as the following time series:

3

tsfresh Documentation, Release 0.10.0

Now you want to calculate different characteristics such as the maximal or minimal temperature, the average temper-
ature or the number of temporary temperature peaks:

4 Chapter 1. Contents

tsfresh Documentation, Release 0.10.0

Without tsfresh, you would have to calculate all those characteristics by hand. With tsfresh this process is automated
and all those features can be calculated automatically.

Further tsfresh is compatible with pythons pandas and scikit-learn APIs, two important packages for Data
Science endeavours in python.

What to do with these features?

The extracted features can be used to describe or cluster time series based on the extracted characteristics. Further,
they can be used to build models that perform classification/regression tasks on the time series. Often the features give
new insights into time series and their dynamics.

The tsfresh package has been used successfully in projects involving

• the prediction of the life span of machines

• the prediction of the quality of steel billets during a continuous casting process

What not to do with tsfresh?

Currently, tsfresh is not suitable

• for usage with streaming data

• for batch processing over a distributed architecture, where different time series are fragmented over different
computational units

• to train models on the features (we do not want to reinvent the wheel, check out the python package scikit-learn
for example)

1.1. Introduction 5

http://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas
http://scikit-learn.org/stable/

tsfresh Documentation, Release 0.10.0

However, some of these use cases could be implemented, if you have an application in mind, open an issue at https:
//github.com/blue-yonder/tsfresh/issues, or feel free to contact us.

What else is out there?

There is a matlab package called hctsa which can be used to automatically extract features from time series. It is also
possible to use hctsa from within python by means of the pyopy package.

Quick Start

Install tsfresh

As the compiled tsfresh package is hosted on the Python Package Index (PyPI) you can easily install it with pip

pip install tsfresh

Dive in

Before boring yourself by reading the docs in detail, you can dive right into tsfresh with the following example:

We are given a data set containing robot failures as discussed in1. Each robot records time series from six different
sensors. For each sample denoted by a different id we are going to classify if the robot reports a failure or not. From a
machine learning point of view, our goal is to classify each group of time series.

To start, we load the data into python

from tsfresh.examples.robot_execution_failures import download_robot_execution_
→˓failures, \

load_robot_execution_failures
download_robot_execution_failures()
timeseries, y = load_robot_execution_failures()

and end up with a pandas.DataFrame timeseries having the following shape

id time F_x F_y F_z T_x T_y T_z
0 1 0 -1 -1 63 -3 -1 0
1 1 1 0 0 62 -3 -1 0
2 1 2 -1 -1 61 -3 0 0
3 1 3 -1 -1 63 -2 -1 0
4 1 4 -1 -1 63 -3 -1 0
...

The first column is the DataFrame index and has no meaning here. There are six different time series (a-f) for the
different sensors. The different robots are denoted by the ids column.

On the other hand, y contains the information which robot id reported a failure and which not:

1 http://archive.ics.uci.edu/ml/datasets/Robot+Execution+Failures

6 Chapter 1. Contents

https://github.com/blue-yonder/tsfresh/issues
https://github.com/blue-yonder/tsfresh/issues
https://github.com/benfulcher/hctsa
https://github.com/strawlab/pyopy
http://archive.ics.uci.edu/ml/datasets/Robot+Execution+Failures

tsfresh Documentation, Release 0.10.0

1 0
2 0
3 0
4 0
5 0
... ...

Here, for the samples with ids 1 to 5 no failure was reported.

In the following we illustrate the time series of the sample id 3 reporting no failure:

And for id 20 reporting a failure:

You can already see some differences by eye - but for successful machine learning we have to put these differences
into numbers.

1.2. Quick Start 7

tsfresh Documentation, Release 0.10.0

For this, tsfresh comes into place. It allows us to automatically extract over 1200 features from those six different time
series for each robot.

For extracting all features, we do:

from tsfresh import extract_features
extracted_features = extract_features(timeseries, column_id="id", column_sort="time")

You end up with a DataFrame extracted_features with all more than 1200 different extracted features. We will now
remove all NaN values (that were created by feature calculators, than can not be used on the given data, e.g. because
it has too low statistics) and select only the relevant features next:

from tsfresh import select_features
from tsfresh.utilities.dataframe_functions import impute

impute(extracted_features)
features_filtered = select_features(extracted_features, y)

Only around 300 features were classified as relevant enough.

Further, you can even perform the extraction, imputing and filtering at the same time with the tsfresh.
extract_relevant_features() function:

from tsfresh import extract_relevant_features

features_filtered_direct = extract_relevant_features(timeseries, y,
column_id='id', column_sort='time

→˓')

You can now use the features contained in the DataFrame features_filtered (which is equal to features_filtered_direct)
in conjunction with y to train your classification model. Please see the robot_failure_example.ipynb Jupyter Notebook
in the folder named notebook for this. In this notebook a RandomForestClassifier is trained on the extracted features.

References

tsfresh

tsfresh package

Subpackages

tsfresh.convenience package

Submodules

8 Chapter 1. Contents

tsfresh Documentation, Release 0.10.0

tsfresh.convenience.relevant_extraction module

tsfresh.convenience.relevant_extraction.extract_relevant_features(timeseries_container,
y, X=None,
de-
fault_fc_parameters=None,
kind_to_fc_parameters=None,
col-
umn_id=None,
col-
umn_sort=None,
col-
umn_kind=None,
col-
umn_value=None,
show_warnings=False,
dis-
able_progressbar=False,
pro-
file=False,
profil-
ing_filename=’profile.txt’,
profil-
ing_sorting=’cumulative’,
test_for_binary_target_binary_feature=’fisher’,
test_for_binary_target_real_feature=’mann’,
test_for_real_target_binary_feature=’mann’,
test_for_real_target_real_feature=’kendall’,
fdr_level=0.05,
hypothe-
ses_independent=False,
n_jobs=2,
chunk-
size=None,
ml_task=’auto’)

High level convenience function to extract time series features from timeseries_container. Then return feature
matrix X possibly augmented with relevent features with respect to target vector y.

For more details see the documentation of extract_features() and select_features().

Examples

>>> from tsfresh.examples import load_robot_execution_failures
>>> from tsfresh import extract_relevant_features
>>> df, y = load_robot_execution_failures()
>>> X = extract_relevant_features(df, y, column_id='id', column_sort='time')

Parameters

• timeseries_container – The pandas.DataFrame with the time series to compute the
features for, or a dictionary of pandas.DataFrames. See extract_features().

• X (pandas.DataFrame) – A DataFrame containing additional features

1.3. tsfresh 9

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame

tsfresh Documentation, Release 0.10.0

• y (pandas.Series) – The target vector

• default_fc_parameters (dict) – mapping from feature calculator names to pa-
rameters. Only those names which are keys in this dict will be calculated. See the
class:ComprehensiveFCParameters for more information.

• kind_to_fc_parameters (dict) – mapping from kind names to objects of the same
type as the ones for default_fc_parameters. If you put a kind as a key here, the fc_parameters
object (which is the value), will be used instead of the default_fc_parameters.

• column_id (str) – The name of the id column to group by.

• column_sort (str) – The name of the sort column.

• column_kind (str) – The name of the column keeping record on the kind of the value.

• column_value (str) – The name for the column keeping the value itself.

• chunksize (None or int) – The size of one chunk for the parallelisation

• n_jobs (int) – The number of processes to use for parallelization. If zero, no paralleliza-
tion is used.

• disable_progressbar (bool) – Do not show a progressbar while doing the calcula-
tion.

• profile (bool) – Turn on profiling during feature extraction

• profiling_sorting (basestring) – How to sort the profiling results (see the doc-
umentation of the profiling package for more information)

• profiling_filename (basestring) – Where to save the profiling results.

• test_for_binary_target_binary_feature (str) – Which test to be used for
binary target, binary feature (currently unused)

• test_for_binary_target_real_feature (str) – Which test to be used for bi-
nary target, real feature

• test_for_real_target_binary_feature (str) – Which test to be used for real
target, binary feature (currently unused)

• test_for_real_target_real_feature (str) – Which test to be used for real
target, real feature (currently unused)

• fdr_level (float) – The FDR level that should be respected, this is the theoretical
expected percentage of irrelevant features among all created features.

• hypotheses_independent (bool) – Can the significance of the features be assumed
to be independent? Normally, this should be set to False as the features are never indepen-
dent (e.g. mean and median)

• ml_task (str) – The intended machine learning task. Either ‘classification’, ‘regression’
or ‘auto’. Defaults to ‘auto’, meaning the intended task is inferred from y. If y has a boolean,
integer or object dtype, the task is assumend to be classification, else regression.

Param show_warnings: Show warnings during the feature extraction (needed for debugging of cal-
culators).

Returns Feature matrix X, possibly extended with relevant time series features.

10 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#basestring
https://docs.python.org/2.7/library/functions.html#basestring
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str

tsfresh Documentation, Release 0.10.0

Module contents

The convenience submodule contains methods that allow the user to extract and filter features conveniently.

tsfresh.examples package

Submodules

tsfresh.examples.driftbif_simulation module

tsfresh.examples.driftbif_simulation.load_driftbif(n, l, m=2, classification=True,
kappa_3=0.3, seed=False)

Simulates n time-series with l time steps each for the m-dimensional velocity of a dissipative soliton

classification=True: target 0 means tau<=1/0.3, Dissipative Soliton with Brownian motion (purely noise driven)
target 1 means tau> 1/0.3, Dissipative Soliton with Active Brownian motion (intrinsiv velocity with overlaid
noise)

classification=False: target is bifurcation parameter tau

Parameters

• n (int) – number of samples

• l (int) – length of the time series

• m (int) – number of spatial dimensions (default m=2) the dissipative soliton is propagating
in

• classification (bool) – distinguish between classification (default True) and regres-
sion target

• kappa_3 (float) – inverse bifurcation parameter (default 0.3)

• seed (float) – random seed (default False)

Returns X, y. Time series container and target vector

Rtype X pandas.DataFrame

Rtype y pandas.DataFrame

tsfresh.examples.driftbif_simulation.sample_tau(n=10, kappa_3=0.3, ratio=0.5,
rel_increase=0.15)

Return list of control parameters

Parameters

• n (int) – number of samples

• kappa_3 (float) – inverse bifurcation point

• ratio (float) – ratio (default 0.5) of samples before and beyond drift-bifurcation

• rel_increase (float) – relative increase from bifurcation point

Returns tau. List of sampled bifurcation parameter

Rtype tau list

1.3. tsfresh 11

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float

tsfresh Documentation, Release 0.10.0

class tsfresh.examples.driftbif_simulation.velocity(tau=3.8, kappa_3=0.3, Q=1950.0,
R=0.0003, delta_t=0.05,
seed=None)

Bases: object

Simulates the velocity of a dissipative soliton (kind of self organized particle). The equilibrium velocity without
noise R=0 for $ au>1.0/kappa_3$ is $kappa_3 sqrt{(tau - 1.0/kappa_3)/Q}. Before the drift-bifurcation $ au le
1.0/kappa_3$ the velocity is zero.

References

>>> ds = velocity(tau=3.5) # Dissipative soliton with equilibrium velocity 1.5e-3
>>> print(ds.label) # Discriminating before or beyond Drift-Bifurcation
1
>>> print(ds.deterministic) # Equilibrium velocity
0.0015191090506254991
>>> v = ds.simulate(20000) #Simulated velocity as a time series with 20000 time
→˓steps being disturbed by Gaussian white noise

simulate(N, v0=array([0., 0.]))

Parameters

• N (int) – number of time steps

• v0 (ndarray) – initial velocity vector

Returns time series of velocity vectors with shape (N, v0.shape[0])

Return type ndarray

tsfresh.examples.har_dataset module

This module implements functions to download and load the Human Activity Recognition dataset [4]. A description
of the data set can be found in [5].

References

tsfresh.examples.har_dataset.download_har_dataset()
Download human activity recognition dataset from UCI ML Repository and store it at /tsfresh/notebooks/data.

Examples

>>> from tsfresh.examples import har_dataset
>>> har_dataset.download_har_dataset()

tsfresh.examples.har_dataset.load_har_classes()

tsfresh.examples.har_dataset.load_har_dataset()

12 Chapter 1. Contents

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#int

tsfresh Documentation, Release 0.10.0

tsfresh.examples.robot_execution_failures module

This module implements functions to download the Robot Execution Failures LP1 Data Set[1] and load it as as
DataFrame.

Important: You need to download the data set yourself, either manually or via the function
download_robot_execution_failures()

References

tsfresh.examples.robot_execution_failures.download_robot_execution_failures()
Download the Robot Execution Failures LP1 Data Set[1] from the UCI Machine Learning Repository[2] and
store it locally. :return:

Examples

>>> from tsfresh.examples import download_robot_execution_failures
>>> download_robot_execution_failures()

tsfresh.examples.robot_execution_failures.load_robot_execution_failures(multiclass=False)
Load the Robot Execution Failures LP1 Data Set[1]. The Time series are passed as a flat DataFrame.

Examples

>>> from tsfresh.examples import load_robot_execution_failures
>>> df, y = load_robot_execution_failures()
>>> print(df.shape)
(1320, 8)

Parameters multiclass (bool) – If True, return all target labels. The default returns only
“normal” vs all other labels.

Returns time series data as pandas.DataFrame and target vector as pandas.Series

Return type tuple

tsfresh.examples.test_tsfresh_baseline_dataset module

This module implements a function to download a json timeseries data set that is utilised by
tests/baseline/tsfresh_features_test.py to test calculated feature names and their calculated values are consistent
with the known baseline.

tsfresh.examples.test_tsfresh_baseline_dataset.download_json_dataset()
Download the tests baseline timeseries json data set and store it at ts-
fresh/examples/data/test_tsfresh_baseline_dataset/data.json.

Examples

>>> from tsfresh.examples import test_tsfresh_baseline_dataset
>>> download_json_dataset()

1.3. tsfresh 13

https://docs.python.org/2.7/library/functions.html#bool
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#tuple

tsfresh Documentation, Release 0.10.0

Module contents

Module with exemplary data sets to play around with.

See for eample the Quick Start section on how to use them.

tsfresh.feature_extraction package

Submodules

tsfresh.feature_extraction.extraction module

This module contains the main function to interact with tsfresh: extract features

tsfresh.feature_extraction.extraction.extract_features(timeseries_container, de-
fault_fc_parameters=None,
kind_to_fc_parameters=None,
column_id=None, col-
umn_sort=None, col-
umn_kind=None, col-
umn_value=None, chunk-
size=None, n_jobs=2,
show_warnings=False,
disable_progressbar=False,
impute_function=None,
profile=False, profil-
ing_filename=’profile.txt’,
profil-
ing_sorting=’cumulative’)

Extract features from

•a pandas.DataFrame containing the different time series

or

•a dictionary of pandas.DataFrame each containing one type of time series

In both cases a pandas.DataFrame with the calculated features will be returned.

For a list of all the calculated time series features, please see the ComprehensiveFCParameters class,
which is used to control which features with which parameters are calculated.

For a detailed explanation of the different parameters and data formats please see Data Formats.

Examples

>>> from tsfresh.examples import load_robot_execution_failures
>>> from tsfresh import extract_features
>>> df, _ = load_robot_execution_failures()
>>> X = extract_features(df, column_id='id', column_sort='time')

Parameters

14 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame

tsfresh Documentation, Release 0.10.0

• timeseries_container (pandas.DataFrame or dict) – The pan-
das.DataFrame with the time series to compute the features for, or a dictionary of
pandas.DataFrames.

• default_fc_parameters (dict) – mapping from feature calculator names to pa-
rameters. Only those names which are keys in this dict will be calculated. See the
class:ComprehensiveFCParameters for more information.

• kind_to_fc_parameters (dict) – mapping from kind names to objects of the same
type as the ones for default_fc_parameters. If you put a kind as a key here, the fc_parameters
object (which is the value), will be used instead of the default_fc_parameters.

• column_id (str) – The name of the id column to group by.

• column_sort (str) – The name of the sort column.

• column_kind (str) – The name of the column keeping record on the kind of the value.

• column_value (str) – The name for the column keeping the value itself.

• n_jobs (int) – The number of processes to use for parallelization. If zero, no paralleliza-
tion is used.

• chunksize (None or int) – The size of one chunk for the parallelisation

• disable_progressbar (bool) – Do not show a progressbar while doing the calcula-
tion.

• impute_function (None or callable) – None, if no imputing should happen or
the function to call for imputing.

• profile (bool) – Turn on profiling during feature extraction

• profiling_sorting (basestring) – How to sort the profiling results (see the doc-
umentation of the profiling package for more information)

• profiling_filename (basestring) – Where to save the profiling results.

Param show_warnings: Show warnings during the feature extraction (needed for debugging of cal-
culators).

Returns The (maybe imputed) DataFrame containing extracted features.

Return type pandas.DataFrame

tsfresh.feature_extraction.feature_calculators module

This module contains the feature calculators that take time series as input and calculate the values of the feature. There
are two types of features:

1. feature calculators which calculate a single number (simple)

2. feature calculators which calculate a bunch of features for a list of parameters at once, to use e.g. cached results
(combiner). They return a list of (key, value) pairs for each input parameter.

They are specified using the “fctype” parameter of each feature calculator, which is added using the set_property
function. Only functions in this python module, which have a parameter called “fctype” are seen by tsfresh as a
feature calculator. Others will not be calculated.

tsfresh.feature_extraction.feature_calculators.abs_energy(x)
Returns the absolute energy of the time series which is the sum over the squared values

𝐸 =
∑︁

𝑖=1,...,𝑛

𝑥2
𝑖

1.3. tsfresh 15

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#callable
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#basestring
https://docs.python.org/2.7/library/functions.html#basestring
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame

tsfresh Documentation, Release 0.10.0

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.absolute_sum_of_changes(x)
Returns the sum over the absolute value of consecutive changes in the series x∑︁

𝑖=1,...,𝑛−1

| 𝑥𝑖+1 − 𝑥𝑖 |

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.agg_autocorrelation(x, param)
Calculates the value of an aggregation function f_agg (e.g. var or mean) of the autocorrelation (Compare to
http://en.wikipedia.org/wiki/Autocorrelation#Estimation), taken over different all possible lags (1 to length of
x)

1

𝑛− 1

∑︁
𝑙=1,...,𝑛

1

(𝑛− 𝑙)𝜎2

𝑛−𝑙∑︁
𝑡=1

(𝑋𝑡 − 𝜇)(𝑋𝑡+𝑙 − 𝜇)

where 𝑛 is the length of the time series 𝑋𝑖, 𝜎2 its variance and 𝜇 its mean.

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• param (list) – contains dictionaries {“attr”: x} with x str, name of a numpy function
(e.g. mean, var, std, median), the name of the aggregator function that is applied to the
autocorrelations

Returns the value of this feature

Return type float

This function is of type: combiner

tsfresh.feature_extraction.feature_calculators.agg_linear_trend(x, param)
Calculates a linear least-squares regression for values of the time series that were aggregated over chunks versus
the sequence from 0 up to the number of chunks minus one.

This feature assumes the signal to be uniformly sampled. It will not use the time stamps to fit the model.

The parameters attr controls which of the characteristics are returned. Possible extracted attributes are “pvalue”,
“rvalue”, “intercept”, “slope”, “stderr”, see the documentation of linregress for more information.

The chunksize is regulated by “chunk_len”. It specifies how many time series values are in each chunk.

Further, the aggregation function is controlled by “f_agg”, which can use “max”, “min” or , “mean”, “median”

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• param (list) – contains dictionaries {“attr”: x, “chunk_len”: l, “f_agg”: f} with x, f an
string and l an int

16 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://en.wikipedia.org/wiki/Autocorrelation#Estimation
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

Returns the different feature values

Return type pandas.Series

This function is of type: combiner

tsfresh.feature_extraction.feature_calculators.approximate_entropy(x, m, r)
Implements a vectorized Approximate entropy algorithm.

https://en.wikipedia.org/wiki/Approximate_entropy

For short time-series this method is highly dependent on the parameters, but should be stable for N > 2000, see:

Yentes et al. (2012) - The Appropriate Use of Approximate Entropy and Sample Entropy with Short
Data Sets

Other shortcomings and alternatives discussed in:

Richman & Moorman (2000) - Physiological time-series analysis using approximate entropy and
sample entropy

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• m (int) – Length of compared run of data

• r (float) – Filtering level, must be positive

Returns Approximate entropy

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.ar_coefficient(x, param)
This feature calculator fits the unconditional maximum likelihood of an autoregressive AR(k) process. The k
parameter is the maximum lag of the process

𝑋𝑡 = 𝜙0 +

𝑘∑︁
𝑖=1

𝜙𝑖𝑋𝑡−𝑖 + 𝜀𝑡

For the configurations from param which should contain the maxlag “k” and such an AR process is calculated.
Then the coefficients 𝜙𝑖 whose index 𝑖 contained from “coeff” are returned.

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• param (list) – contains dictionaries {“coeff”: x, “k”: y} with x,y int

Return x the different feature values

Return type pandas.Series

This function is of type: combiner

tsfresh.feature_extraction.feature_calculators.augmented_dickey_fuller(x,
param)

The Augmented Dickey-Fuller test is a hypothesis test which checks whether a unit root is present in a time
series sample. This feature calculator returns the value of the respective test statistic.

See the statsmodels implementation for references and more details.

Parameters

1.3. tsfresh 17

https://en.wikipedia.org/wiki/Approximate_entropy
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

• x (pandas.Series) – the time series to calculate the feature of

• param (list) – contains dictionaries {“attr”: x} with x str, either “teststat”, “pvalue” or
“usedlag”

Returns the value of this feature

Return type float

This function is of type: combiner

tsfresh.feature_extraction.feature_calculators.autocorrelation(x, lag)
Calculates the autocorrelation of the specified lag, according to the formula [1]

1

(𝑛− 𝑙)𝜎2

𝑛−𝑙∑︁
𝑡=1

(𝑋𝑡 − 𝜇)(𝑋𝑡+𝑙 − 𝜇)

where 𝑛 is the length of the time series 𝑋𝑖, 𝜎2 its variance and 𝜇 its mean. l denotes the lag.

References

[1] https://en.wikipedia.org/wiki/Autocorrelation#Estimation

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• lag (int) – the lag

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.binned_entropy(x, max_bins)
First bins the values of x into max_bins equidistant bins. Then calculates the value of

−
𝑚𝑖𝑛(𝑚𝑎𝑥_𝑏𝑖𝑛𝑠,𝑙𝑒𝑛(𝑥))∑︁

𝑘=0

𝑝𝑘𝑙𝑜𝑔(𝑝𝑘) · 1(𝑝𝑘>0)

where 𝑝𝑘 is the percentage of samples in bin 𝑘.

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• max_bins (int) – the maximal number of bins

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.c3(x, lag)
This function calculates the value of

1

𝑛− 2𝑙𝑎𝑔

𝑛−2𝑙𝑎𝑔∑︁
𝑖=0

𝑥2
𝑖+2·𝑙𝑎𝑔 · 𝑥𝑖+𝑙𝑎𝑔 · 𝑥𝑖

18 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://en.wikipedia.org/wiki/Autocorrelation#Estimation
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#int

tsfresh Documentation, Release 0.10.0

which is

E[𝐿2(𝑋)2 · 𝐿(𝑋) ·𝑋]

where E is the mean and 𝐿 is the lag operator. It was proposed in [1] as a measure of non linearity in the time
series.

References

[1] Schreiber, T. and Schmitz, A. (1997).
Discrimination power of measures for nonlinearity in a time series
PHYSICAL REVIEW E, VOLUME 55, NUMBER 5

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• lag (int) – the lag that should be used in the calculation of the feature

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.change_quantiles(x, ql, qh, isabs,
f_agg)

First fixes a corridor given by the quantiles ql and qh of the distribution of x. Then calculates the average,
absolute value of consecutive changes of the series x inside this corridor.

Think about selecting a corridor on the y-Axis and only calculating the mean of the absolute change of the time
series inside this corridor.

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• ql (float) – the lower quantile of the corridor

• qh (float) – the higher quantile of the corridor

• isabs (bool) – should the absolute differences be taken?

• f_agg (str, name of a numpy function (e.g. mean, var, std,
median)) – the aggregator function that is applied to the differences in the bin

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.count_above_mean(x)
Returns the number of values in x that are higher than the mean of x

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

1.3. tsfresh 19

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#str
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

tsfresh.feature_extraction.feature_calculators.count_below_mean(x)
Returns the number of values in x that are lower than the mean of x

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.cwt_coefficients(x, param)
Calculates a Continuous wavelet transform for the Ricker wavelet, also known as the “Mexican hat wavelet”
which is defined by

2√
3𝑎𝜋

1
4

(1− 𝑥2

𝑎2
)𝑒𝑥𝑝(− 𝑥2

2𝑎2
)

where 𝑎 is the width parameter of the wavelet function.

This feature calculator takes three different parameter: widths, coeff and w. The feature calculater takes all the
different widths arrays and then calculates the cwt one time for each different width array. Then the values for
the different coefficient for coeff and width w are returned. (For each dic in param one feature is returned)

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• param (list) – contains dictionaries {“widths”:x, “coeff”: y, “w”: z} with x array of int
and y,z int

Returns the different feature values

Return type pandas.Series

This function is of type: combiner

tsfresh.feature_extraction.feature_calculators.energy_ratio_by_chunks(x,
param)

Calculates the sum of squares of chunk i out of N chunks expressed as a ratio with the sum of squares over the
whole series

Takes as input parameters the number num_segments of segments to divide the series into and segment_focus
which is the segment number (starting at zero) to return a feature on.

Note that the answer for num_segments=1 is a trivial “1” but we handle this scenario in case somebody calls it.
Sum of the ratios should be 1.0.

Returns an error for N <= 0

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• param – contains dictionaries {“num_segments”: N, “segment_focus”: i} with N, i both
ints

Returns the feature values

Return type list of tuples (index, data)

This function is of type: combiner

20 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

tsfresh.feature_extraction.feature_calculators.fft_coefficient(x, param)
Calculates the fourier coefficients of the one-dimensional discrete Fourier Transform for real input by fast fourier
transformation algorithm

𝐴𝑘 =

𝑛−1∑︁
𝑚=0

𝑎𝑚 exp

{︂
−2𝜋𝑖

𝑚𝑘

𝑛

}︂
, 𝑘 = 0, . . . , 𝑛− 1.

The resulting coefficients will be complex, this feature calculator can return the real part (attr==”real”), the
imaginary part (attr==”imag), the absolute value (attr=”“abs) and the angle in degrees (attr==”angle).

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• param (list) – contains dictionaries {“coeff”: x, “attr”: s} with x int and x >= 0, s str
and in [”real”, “imag”, “abs”, “angle”]

Returns the different feature values

Return type pandas.Series

This function is of type: combiner

tsfresh.feature_extraction.feature_calculators.first_location_of_maximum(x)
Returns the first location of the maximum value of x. The position is calculated relatively to the length of x.

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.first_location_of_minimum(x)
Returns the first location of the minimal value of x. The position is calculated relatively to the length of x.

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.friedrich_coefficients(x,
param)

Coefficients of polynomial ℎ(𝑥), which has been fitted to the deterministic dynamics of Langevin model

�̇�(𝑡) = ℎ(𝑥(𝑡)) +𝒩 (0, 𝑅)

as described by [1].

For short time-series this method is highly dependent on the parameters.

References

[1] Friedrich et al. (2000): Physics Letters A 271, p. 217-222
Extracting model equations from experimental data

Parameters

1.3. tsfresh 21

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

• x (pandas.Series) – the time series to calculate the feature of

• c (str) – the time series name

• param (list) – contains dictionaries {“coeff”: x} with x int and x >= 0

Returns the different feature values

Return type pandas.Series

This function is of type: combiner

tsfresh.feature_extraction.feature_calculators.has_duplicate(x)
Checks if any value in x occurs more than once

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type bool

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.has_duplicate_max(x)
Checks if the maximum value of x is observed more than once

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type bool

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.has_duplicate_min(x)
Checks if the minimal value of x is observed more than once

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type bool

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.index_mass_quantile(x, param)
Those apply features calculate the relative index i where q% of the mass of the time series x lie left of i. For
example for q = 50% this feature calculator will return the mass center of the time series

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• param (list) – contains dictionaries {“q”: x} with x float

Returns the different feature values

Return type pandas.Series

This function is of type: combiner

tsfresh.feature_extraction.feature_calculators.kurtosis(x)
Returns the kurtosis of x (calculated with the adjusted Fisher-Pearson standardized moment coefficient G2).

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

22 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#str
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.large_standard_deviation(x,
r)

Boolean variable denoting if the standard dev of x is higher than ‘r’ times the range = difference between max
and min of x. Hence it checks if

𝑠𝑡𝑑(𝑥) > 𝑟 * (𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋))

According to a rule of the thumb, the standard deviation should be a forth of the range of the values.

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• r (float) – the percentage of the range to compare with

Returns the value of this feature

Return type bool

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.last_location_of_maximum(x)
Returns the relative last location of the maximum value of x. The position is calculated relatively to the length
of x.

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.last_location_of_minimum(x)
Returns the last location of the minimal value of x. The position is calculated relatively to the length of x.

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.length(x)
Returns the length of x

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type int

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.linear_trend(x, param)
Calculate a linear least-squares regression for the values of the time series versus the sequence from 0 to length
of the time series minus one. This feature assumes the signal to be uniformly sampled. It will not use the time
stamps to fit the model. The parameters control which of the characteristics are returned.

Possible extracted attributes are “pvalue”, “rvalue”, “intercept”, “slope”, “stderr”, see the documentation of
linregress for more information.

Parameters

1.3. tsfresh 23

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

• x (pandas.Series) – the time series to calculate the feature of

• param (list) – contains dictionaries {“attr”: x} with x an string, the attribute name of the
regression model

Returns the different feature values

Return type pandas.Series

This function is of type: combiner

tsfresh.feature_extraction.feature_calculators.longest_strike_above_mean(x)
Returns the length of the longest consecutive subsequence in x that is bigger than the mean of x

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.longest_strike_below_mean(x)
Returns the length of the longest consecutive subsequence in x that is smaller than the mean of x

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.max_langevin_fixed_point(x,
r,
m)

Largest fixed point of dynamics :math:argmax_x {h(x)=0}‘ estimated from polynomial ℎ(𝑥), which has been
fitted to the deterministic dynamics of Langevin model

(̇𝑥)(𝑡) = ℎ(𝑥(𝑡)) +𝑅(𝑁)(0, 1)

as described by

Friedrich et al. (2000): Physics Letters A 271, p. 217-222 Extracting model equations from experi-
mental data

For short time-series this method is highly dependent on the parameters.

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• m (int) – order of polynom to fit for estimating fixed points of dynamics

• r (float) – number of quantils to use for averaging

Returns Largest fixed point of deterministic dynamics

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.maximum(x)
Calculates the highest value of the time series x.

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

24 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.mean(x)
Returns the mean of x

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.mean_abs_change(x)
Returns the mean over the absolute differences between subsequent time series values which is

1

𝑛

∑︁
𝑖=1,...,𝑛−1

|𝑥𝑖+1 − 𝑥𝑖|

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.mean_change(x)
Returns the mean over the absolute differences between subsequent time series values which is

1

𝑛

∑︁
𝑖=1,...,𝑛−1

𝑥𝑖+1 − 𝑥𝑖

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.mean_second_derivate_central(x)
Returns the mean value of a central approximation of the second derivative

1

𝑛

∑︁
𝑖=1,...,𝑛−1

1

2
(𝑥𝑖+2 − 2 · 𝑥𝑖+1 + 𝑥𝑖)

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.median(x)
Returns the median of x

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

1.3. tsfresh 25

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.minimum(x)
Calculates the lowest value of the time series x.

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.number_crossing_m(x, m)
Calculates the number of crossings of x on m. A crossing is defined as two sequential values where the first
value is lower than m and the next is greater, or vice-versa. If you set m to zero, you will get the number of zero
crossings.

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• m (float) – the threshold for the crossing

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.number_cwt_peaks(x, n)
This feature calculator searches for different peaks in x. To do so, x is smoothed by a ricker wavelet and for
widths ranging from 1 to n. This feature calculator returns the number of peaks that occur at enough width
scales and with sufficiently high Signal-to-Noise-Ratio (SNR)

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• n (int) – maximum width to consider

Returns the value of this feature

Return type int

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.number_peaks(x, n)
Calculates the number of peaks of at least support n in the time series x. A peak of support n is defined as a
subsequence of x where a value occurs, which is bigger than its n neighbours to the left and to the right.

Hence in the sequence

>>> x = [3, 0, 0, 4, 0, 0, 13]

4 is a peak of support 1 and 2 because in the subsequences

>>> [0, 4, 0]
>>> [0, 0, 4, 0, 0]

4 is still the highest value. Here, 4 is not a peak of support 3 because 13 is the 3th neighbour to the right of 4
and its bigger than 4.

Parameters

• x (pandas.Series) – the time series to calculate the feature of

26 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

• n (int) – the support of the peak

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.partial_autocorrelation(x,
param)

Calculates the value of the partial autocorrelation function at the given lag. The lag k partial autocorrelation of a
time series {𝑥𝑡, 𝑡 = 1 . . . 𝑇} equals the partial correlation of 𝑥𝑡 and 𝑥𝑡−𝑘, adjusted for the intermediate variables
{𝑥𝑡−1, . . . , 𝑥𝑡−𝑘+1} ([1]). Following [2], it can be defined as

𝛼𝑘 =
𝐶𝑜𝑣(𝑥𝑡, 𝑥𝑡−𝑘|𝑥𝑡−1, . . . , 𝑥𝑡−𝑘+1)√︀

𝑉 𝑎𝑟(𝑥𝑡|𝑥𝑡−1, . . . , 𝑥𝑡−𝑘+1)𝑉 𝑎𝑟(𝑥𝑡−𝑘|𝑥𝑡−1, . . . , 𝑥𝑡−𝑘+1)

with (a) 𝑥𝑡 = 𝑓(𝑥𝑡−1, . . . , 𝑥𝑡−𝑘+1) and (b) 𝑥𝑡−𝑘 = 𝑓(𝑥𝑡−1, . . . , 𝑥𝑡−𝑘+1) being AR(k-1) models that can be
fitted by OLS. Be aware that in (a), the regression is done on past values to predict 𝑥𝑡 whereas in (b), future
values are used to calculate the past value 𝑥𝑡−𝑘. It is said in [1] that “for an AR(p), the partial autocorrelations
[𝛼𝑘] will be nonzero for k<=p and zero for k>p.” With this property, it is used to determine the lag of an
AR-Process.

References

[1] Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015).
Time series analysis: forecasting and control. John Wiley & Sons.
[2] https://onlinecourses.science.psu.edu/stat510/node/62

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• param (list) – contains dictionaries {“lag”: val} with int val indicating the lag to be
returned

Returns the value of this feature

Return type float

This function is of type: combiner

tsfresh.feature_extraction.feature_calculators.percentage_of_reoccurring_datapoints_to_all_datapoints(x)
Returns the percentage of unique values, that are present in the time series more than once.

len(different values occurring more than once) / len(different values)

This means the percentage is normalized to the number of unique values, in contrast to the percent-
age_of_reoccurring_values_to_all_values.

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.percentage_of_reoccurring_values_to_all_values(x)
Returns the ratio of unique values, that are present in the time series more than once.

1.3. tsfresh 27

https://docs.python.org/2.7/library/functions.html#int
https://onlinecourses.science.psu.edu/stat510/node/62
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

of data points occurring more than once / # of all data points

This means the ratio is normalized to the number of data points in the time series, in contrast to the percent-
age_of_reoccurring_datapoints_to_all_datapoints.

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.quantile(x, q)
Calculates the q quantile of x. This is the value of x greater than q% of the ordered values from x.

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• q (float) – the quantile to calculate

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.range_count(x, min, max)
Count observed values within the interval [min, max).

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• min (int or float) – the inclusive lower bound of the range

• max (int or float) – the exclusive upper bound of the range

Returns the count of values within the range

Return type int

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.ratio_beyond_r_sigma(x, r)
Ratio of values that are more than r*std(x) (so r sigma) away from the mean of x.

Parameters x (iterable) – the time series to calculate the feature of

Returns the value of this feature

Return type bool

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.ratio_value_number_to_time_series_length(x)
Returns a factor which is 1 if all values in the time series occur only once, and below one if this is not the case.
In principle, it just returns

unique values / # values

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

28 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.sample_entropy(x)
Calculate and return sample entropy of x.

References

[1] http://en.wikipedia.org/wiki/Sample_Entropy
[2] https://www.ncbi.nlm.nih.gov/pubmed/10843903?dopt=Abstract

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• tolerance (float) – normalization factor; equivalent to the common practice of ex-
pressing the tolerance as r times the standard deviation

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.set_property(key, value)
This method returns a decorator that sets the property key of the function to value

tsfresh.feature_extraction.feature_calculators.skewness(x)
Returns the sample skewness of x (calculated with the adjusted Fisher-Pearson standardized moment coefficient
G1).

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.spkt_welch_density(x, param)
This feature calculator estimates the cross power spectral density of the time series x at different frequencies.
To do so, the time series is first shifted from the time domain to the frequency domain.

The feature calculators returns the power spectrum of the different frequencies.

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• param (list) – contains dictionaries {“coeff”: x} with x int

Returns the different feature values

Return type pandas.Series

This function is of type: combiner

tsfresh.feature_extraction.feature_calculators.standard_deviation(x)
Returns the standard deviation of x

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

1.3. tsfresh 29

http://en.wikipedia.org/wiki/Sample_Entropy
https://www.ncbi.nlm.nih.gov/pubmed/10843903?dopt=Abstract
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.sum_of_reoccurring_data_points(x)
Returns the sum of all data points, that are present in the time series more than once.

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.sum_of_reoccurring_values(x)
Returns the sum of all values, that are present in the time series more than once.

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.sum_values(x)
Calculates the sum over the time series values

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type bool

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.symmetry_looking(x, param)
Boolean variable denoting if the distribution of x looks symmetric. This is the case if

|𝑚𝑒𝑎𝑛(𝑋)−𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)| < 𝑟 * (𝑚𝑎𝑥(𝑋)−𝑚𝑖𝑛(𝑋))

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• r (float) – the percentage of the range to compare with

Returns the value of this feature

Return type bool

This function is of type: combiner

tsfresh.feature_extraction.feature_calculators.time_reversal_asymmetry_statistic(x,
lag)

This function calculates the value of

1

𝑛− 2𝑙𝑎𝑔

𝑛−2𝑙𝑎𝑔∑︁
𝑖=0

𝑥2
𝑖+2·𝑙𝑎𝑔 · 𝑥𝑖+𝑙𝑎𝑔 − 𝑥𝑖+𝑙𝑎𝑔 · 𝑥2

𝑖

which is

E[𝐿2(𝑋)2 · 𝐿(𝑋)− 𝐿(𝑋) ·𝑋2]

where E is the mean and 𝐿 is the lag operator. It was proposed in [1] as a promising feature to extract from time
series.

30 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#float

tsfresh Documentation, Release 0.10.0

References

[1] Fulcher, B.D., Jones, N.S. (2014).
Highly comparative feature-based time-series classification.
Knowledge and Data Engineering, IEEE Transactions on 26, 3026–3037.

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• lag (int) – the lag that should be used in the calculation of the feature

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.value_count(x, value)
Count occurrences of value in time series x.

Parameters

• x (pandas.Series) – the time series to calculate the feature of

• value (int or float) – the value to be counted

Returns the count

Return type int

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.variance(x)
Returns the variance of x

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type float

This function is of type: simple

tsfresh.feature_extraction.feature_calculators.variance_larger_than_standard_deviation(x)
Boolean variable denoting if the variance of x is greater than its standard deviation. Is equal to variance of x
being larger than 1

Parameters x (pandas.Series) – the time series to calculate the feature of

Returns the value of this feature

Return type bool

This function is of type: simple

tsfresh.feature_extraction.settings module

This file contains methods/objects for controlling which features will be extracted when calling extract_features. For
the naming of the features, see Feature Calculation.

1.3. tsfresh 31

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

class tsfresh.feature_extraction.settings.ComprehensiveFCParameters
Bases: dict

Create a new ComprehensiveFCParameters instance. You have to pass this instance to the extract_feature in-
stance.

It is basically a dictionary (and also based on one), which is a mapping from string (the same names that are
in the feature_calculators.py file) to a list of dictionary of parameters, which should be used when the function
with this name is called.

Only those strings (function names), that are keys in this dictionary, will be later used to extract features - so
whenever you delete a key from this dict, you disable the calculation of this feature.

You can use the settings object with

>>> from tsfresh.feature_extraction import extract_features,
→˓ComprehensiveFCParameters
>>> extract_features(df, default_fc_parameters=ComprehensiveFCParameters())

to extract all features (which is the default nevertheless) or you change the ComprehensiveFCParameters object
to other types (see below).

class tsfresh.feature_extraction.settings.EfficientFCParameters
Bases: tsfresh.feature_extraction.settings.ComprehensiveFCParameters

This class is a child class of the ComprehensiveFCParameters class and has the same functionality as its base
class.

The only difference is, that the features with high computational costs are not calculated. Those are denoted by
the attribute “high_comp_cost”.

You should use this object when calling the extract function, like so:

>>> from tsfresh.feature_extraction import extract_features, EfficientFCParameters
>>> extract_features(df, default_fc_parameters=EfficientFCParameters())

class tsfresh.feature_extraction.settings.MinimalFCParameters
Bases: tsfresh.feature_extraction.settings.ComprehensiveFCParameters

This class is a child class of the ComprehensiveFCParameters class and has the same functionality as its base
class. The only difference is, that most of the feature calculators are disabled and only a small subset of calcu-
lators will be calculated at all. Those are donated by an attribute called “minimal”.

Use this class for quick tests of your setup before calculating all features which could take some time depending
of your data set size.

You should use this object when calling the extract function, like so:

>>> from tsfresh.feature_extraction import extract_features, MinimalFCParameters
>>> extract_features(df, default_fc_parameters=MinimalFCParameters())

tsfresh.feature_extraction.settings.from_columns(columns)
Creates a mapping from kind names to fc_parameters objects (which are itself mappings from feature calculators
to settings) to extract only the features contained in the columns. To do so, for every feature name in columns
this method

1.split the column name into col, feature, params part

2.decide which feature we are dealing with (aggregate with/without params or apply)

3.add it to the new name_to_function dict

4.set up the params

32 Chapter 1. Contents

https://docs.python.org/2.7/library/stdtypes.html#dict

tsfresh Documentation, Release 0.10.0

Parameters columns (list of str) – containing the feature names

Returns The kind_to_fc_parameters object ready to be used in the extract_features function.

Return type dict

Module contents

The tsfresh.feature_extraction module contains methods to extract the features from the time series

tsfresh.feature_selection package

Submodules

tsfresh.feature_selection.benjamini_hochberg_test module

tsfresh.feature_selection.benjamini_hochberg_test.benjamini_hochberg_test(df_pvalues,
hy-
pothe-
ses_independent,
fdr_level)

This is an implementation of the benjamini hochberg procedure that determines if the null hypothesis for a given
feature can be rejected. For this the test regards the features’ p-values and controls the global false discovery
rate, which is the ratio of false rejections by all rejections:

𝐹𝐷𝑅 = E
[︂
|false rejections|
|all rejections|

]︂

References

Parameters

• df_pvalues (pandas.DataFrame) – This DataFrame should contain the p_values of
the different hypotheses in a column named “p_values”.

• hypotheses_independent (bool) – Can the significance of the features be assumed
to be independent? Normally, this should be set to False as the features are never indepen-
dent (e.g. mean and median)

• fdr_level (float) – The FDR level that should be respected, this is the theoretical
expected percentage of irrelevant features among all created features.

Returns The same DataFrame as the input, but with an added boolean column “relevant” denoting
if the null hypotheses has been rejected for a given feature.

Return type pandas.DataFrame

tsfresh.feature_selection.relevance module

Contains a feature selection method that evaluates the importance of the different extracted features. To do so, for
every feature the influence on the target is evaluated by an univariate tests and the p-Value is calculated. The methods
that calculate the p-values are called feature selectors.

1.3. tsfresh 33

https://docs.python.org/2.7/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#float
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame

tsfresh Documentation, Release 0.10.0

Afterwards the Benjamini Hochberg procedure which is a multiple testing procedure decides which features to keep
and which to cut off (solely based on the p-values).

tsfresh.feature_selection.relevance.calculate_relevance_table(X, y,
ml_task=’auto’,
n_jobs=2, chunk-
size=None,
test_for_binary_target_binary_feature=’fisher’,
test_for_binary_target_real_feature=’mann’,
test_for_real_target_binary_feature=’mann’,
test_for_real_target_real_feature=’kendall’,
fdr_level=0.05,
hypothe-
ses_independent=False)

Calculate the relevance table for the features contained in feature matrix X with respect to target vector y. The
relevance table is calculated for the intended machine learning task ml_task.

To accomplish this for each feature from the input pandas.DataFrame an univariate feature significance test is
conducted. Those tests generate p values that are then evaluated by the Benjamini Hochberg procedure to decide
which features to keep and which to delete.

We are testing

𝐻0 = the Feature is not relevant and should not be added

against

𝐻1 = the Feature is relevant and should be kept

or in other words

𝐻0 = Target and Feature are independent / the Feature has no influence on the target

𝐻1 = Target and Feature are associated / dependent

When the target is binary this becomes

𝐻0 = (𝐹target=1 = 𝐹target=0)

𝐻1 = (𝐹target=1 ̸= 𝐹target=0)

Where 𝐹 is the distribution of the target.

In the same way we can state the hypothesis when the feature is binary

𝐻0 = (𝑇feature=1 = 𝑇feature=0)

𝐻1 = (𝑇feature=1 ̸= 𝑇feature=0)

Here 𝑇 is the distribution of the target.

TODO: And for real valued?

Parameters

• X (pandas.DataFrame) – Feature matrix in the format mentioned before which will be
reduced to only the relevant features. It can contain both binary or real-valued features at
the same time.

• y (pandas.Series or numpy.ndarray) – Target vector which is needed to test
which features are relevant. Can be binary or real-valued.

• ml_task (str) – The intended machine learning task. Either ‘classification’, ‘regression’
or ‘auto’. Defaults to ‘auto’, meaning the intended task is inferred from y. If y has a boolean,
integer or object dtype, the task is assumend to be classification, else regression.

34 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2.7/library/functions.html#str

tsfresh Documentation, Release 0.10.0

• test_for_binary_target_binary_feature (str) – Which test to be used for
binary target, binary feature (currently unused)

• test_for_binary_target_real_feature (str) – Which test to be used for bi-
nary target, real feature

• test_for_real_target_binary_feature (str) – Which test to be used for real
target, binary feature (currently unused)

• test_for_real_target_real_feature (str) – Which test to be used for real
target, real feature (currently unused)

• fdr_level (float) – The FDR level that should be respected, this is the theoretical
expected percentage of irrelevant features among all created features.

• hypotheses_independent (bool) – Can the significance of the features be assumed
to be independent? Normally, this should be set to False as the features are never indepen-
dent (e.g. mean and median)

• n_jobs (int) – Number of processes to use during the p-value calculation

• chunksize (int) – Size of the chunks submitted to the worker processes

Returns A pandas.DataFrame with each column of the input DataFrame X as index with information
on the significance of this particular feature. The DataFrame has the columns “Feature”, “type”
(binary, real or const), “p_value” (the significance of this feature as a p-value, lower means more
significant) “relevant” (True if the Benjamini Hochberg procedure rejected the null hypothesis
[the feature is not relevant] for this feature)

Return type pandas.DataFrame

tsfresh.feature_selection.relevance.combine_relevance_tables(relevance_tables)
Create a combined relevance table out of a list of relevance tables, aggregating the p-values and the relevances.

Parameters relevance_tables (List[pd.DataFrame]) – A list of relevance tables

Returns The combined relevance table

Return type pandas.DataFrame

tsfresh.feature_selection.relevance.get_feature_type(feature_column)
For a given feature, determine if it is real, binary or constant. Here binary means that only two unique values
occur in the feature.

Parameters feature_column (pandas.Series) – The feature column

Returns ‘constant’, ‘binary’ or ‘real’

tsfresh.feature_selection.relevance.infer_ml_task(y)
Infer the machine learning task to select for. The result will be either ‘regression’ or ‘classification’. If the target
vector only consists of integer typed values or objects, we assume the task is ‘classification’. Else ‘regression’.

Parameters y (pandas.Series) – The target vector y.

Returns ‘classification’ or ‘regression’

Return type str

tsfresh.feature_selection.selection module

This module contains the filtering process for the extracted features. The filtering procedure can also be used on other
features that are not based on time series.

1.3. tsfresh 35

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#str

tsfresh Documentation, Release 0.10.0

tsfresh.feature_selection.selection.select_features(X, y,
test_for_binary_target_binary_feature=’fisher’,
test_for_binary_target_real_feature=’mann’,
test_for_real_target_binary_feature=’mann’,
test_for_real_target_real_feature=’kendall’,
fdr_level=0.05, hypothe-
ses_independent=False,
n_jobs=2, chunksize=None,
ml_task=’auto’)

Check the significance of all features (columns) of feature matrix X and return a possibly reduced feature matrix
only containing relevant features.

The feature matrix must be a pandas.DataFrame in the format:

index feature_1 feature_2 ... feature_N
A
B
...
...
...

Each column will be handled as a feature and tested for its significance to the target.

The target vector must be a pandas.Series or numpy.array in the form

index target
A ...
B ...
. ...
. ...

and must contain all id’s that are in the feature matrix. If y is a numpy.array without index, it is assumed that y
has the same order and length than X and the rows correspond to each other.

Examples

>>> from tsfresh.examples import load_robot_execution_failures
>>> from tsfresh import extract_features, select_features
>>> df, y = load_robot_execution_failures()
>>> X_extracted = extract_features(df, column_id='id', column_sort='time')
>>> X_selected = select_features(X_extracted, y)

Parameters

• X (pandas.DataFrame) – Feature matrix in the format mentioned before which will be
reduced to only the relevant features. It can contain both binary or real-valued features at
the same time.

• y (pandas.Series or numpy.ndarray) – Target vector which is needed to test
which features are relevant. Can be binary or real-valued.

• test_for_binary_target_binary_feature (str) – Which test to be used for
binary target, binary feature (currently unused)

• test_for_binary_target_real_feature (str) – Which test to be used for bi-
nary target, real feature

36 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str

tsfresh Documentation, Release 0.10.0

• test_for_real_target_binary_feature (str) – Which test to be used for real
target, binary feature (currently unused)

• test_for_real_target_real_feature (str) – Which test to be used for real
target, real feature (currently unused)

• fdr_level (float) – The FDR level that should be respected, this is the theoretical
expected percentage of irrelevant features among all created features.

• hypotheses_independent (bool) – Can the significance of the features be assumed
to be independent? Normally, this should be set to False as the features are never indepen-
dent (e.g. mean and median)

• n_jobs (int) – Number of processes to use during the p-value calculation

• chunksize (int) – Size of the chunks submitted to the worker processes

• ml_task (str) – The intended machine learning task. Either ‘classification’, ‘regression’
or ‘auto’. Defaults to ‘auto’, meaning the intended task is inferred from y. If y has a boolean,
integer or object dtype, the task is assumend to be classification, else regression.

Returns The same DataFrame as X, but possibly with reduced number of columns (= features).

Return type pandas.DataFrame

Raises ValueError when the target vector does not fit to the feature matrix or ml_task is not one
of ‘auto’, ‘classification’ or ‘regression’.

tsfresh.feature_selection.significance_tests module

Contains the methods from the following paper about FRESH [2]

Fresh is based on hypothesis tests that individually check the significance of every generated feature on the target. It
makes sure that only features are kept, that are relevant for the regression or classification task at hand. FRESH decide
between four settings depending if the features and target are binary or not.

The four functions are named

1. target_binary_feature_binary_test(): Target and feature are both binary

2. target_binary_feature_real_test(): Target is binary and feature real

3. target_real_feature_binary_test(): Target is real and the feature is binary

4. target_real_feature_real_test(): Target and feature are both real

References

tsfresh.feature_selection.significance_tests.target_binary_feature_binary_test(x,
y)

Calculate the feature significance of a binary feature to a binary target as a p-value. Use the two-sided univariate
fisher test from fisher_exact() for this.

Parameters

• x (pandas.Series) – the binary feature vector

• y (pandas.Series) – the binary target vector

Returns the p-value of the feature significance test. Lower p-values indicate a higher feature signif-
icance

1.3. tsfresh 37

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#str
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html#scipy.stats.fisher_exact
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series

tsfresh Documentation, Release 0.10.0

Return type float

Raise ValueError if the target or the feature is not binary.

tsfresh.feature_selection.significance_tests.target_binary_feature_real_test(x,
y,
test)

Calculate the feature significance of a real-valued feature to a binary target as a p-value. Use either the Mann-
Whitney U or Kolmogorov Smirnov from mannwhitneyu() or ks_2samp() for this.

Parameters

• x (pandas.Series) – the real-valued feature vector

• y (pandas.Series) – the binary target vector

• test (str) – The significance test to be used. Either 'mann' for the Mann-Whitney-U
test or 'smir' for the Kolmogorov-Smirnov test

Returns the p-value of the feature significance test. Lower p-values indicate a higher feature signif-
icance

Return type float

Raise ValueError if the target is not binary.

tsfresh.feature_selection.significance_tests.target_real_feature_binary_test(x,
y)

Calculate the feature significance of a binary feature to a real-valued target as a p-value. Use the Kolmogorov-
Smirnov test from from ks_2samp() for this.

Parameters

• x (pandas.Series) – the binary feature vector

• y (pandas.Series) – the real-valued target vector

Returns the p-value of the feature significance test. Lower p-values indicate a higher feature signif-
icance.

Return type float

Raise ValueError if the feature is not binary.

tsfresh.feature_selection.significance_tests.target_real_feature_real_test(x,
y)

Calculate the feature significance of a real-valued feature to a real-valued target as a p-value. Use Kendall’s tau
from kendalltau() for this.

Parameters

• x (pandas.Series) – the real-valued feature vector

• y (pandas.Series) – the real-valued target vector

Returns the p-value of the feature significance test. Lower p-values indicate a higher feature signif-
icance.

Return type float

Module contents

The feature_selection module contains feature selection algorithms. Those methods were suited to pick the
best explaining features out of a massive amount of features. Often the features have to be picked in situations where
one has more features than samples. Traditional feature selection methods can be not suitable for such situations

38 Chapter 1. Contents

https://docs.python.org/2.7/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html#scipy.stats.mannwhitneyu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html#scipy.stats.ks_2samp
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html#scipy.stats.ks_2samp
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#float
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html#scipy.stats.kendalltau
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.python.org/2.7/library/functions.html#float

tsfresh Documentation, Release 0.10.0

which is why we propose a p-value based approach that inspects the significance of the features individually to avoid
overfitting and spurious correlations.

tsfresh.scripts package

Submodules

tsfresh.scripts.run_tsfresh module

Run the script with: ‘‘‘ python run_tsfresh.py path_to_your_csv.csv

Inline literal start-string without end-string.

• Currently this only samples to first 50 values.

• Your csv must be space delimited.

• Output is saved as path_to_your_csv.features.csv

` e.g.: ` python run_tsfresh.py data.txt ‘‘‘

Inline literal start-string without end-string.

Inline interpreted text or phrase reference start-string without end-string.

A corresponding csv containing time series features will be saved as features_path_to_your_csv.csv

tsfresh.scripts.run_tsfresh.main(console_args=None)

tsfresh.scripts.test_timing module

tsfresh.scripts.test_timing.plot_results()

tsfresh.scripts.test_timing.test_timing()

tsfresh.scripts.test_timing.test_with_length(length, df)

Module contents

tsfresh.transformers package

Submodules

1.3. tsfresh 39

tsfresh Documentation, Release 0.10.0

tsfresh.transformers.feature_augmenter module

class tsfresh.transformers.feature_augmenter.FeatureAugmenter(default_fc_parameters=None,
kind_to_fc_parameters=None,
column_id=None,
column_sort=None,
column_kind=None,
col-
umn_value=None,
time-
series_container=None,
chunksize=None,
n_jobs=2,
show_warnings=False,
dis-
able_progressbar=False,
im-
pute_function=None,
profile=False, profil-
ing_filename=’profile.txt’,
profil-
ing_sorting=’cumulative’)

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Sklearn-compatible estimator, for calculating and adding many features calculated from a given time series to
the data. Is is basically a wrapper around extract_features().

The features include basic ones like min, max or median, and advanced features like fourier transformations
or statistical tests. For a list of all possible features, see the module feature_calculators. The column
name of each added feature contains the name of the function of that module, which was used for the calculation.

For this estimator, two datasets play a crucial role:

1.the time series container with the timeseries data. This container (for the format see Data Formats) contains
the data which is used for calculating the features. It must be groupable by ids which are used to identify
which feature should be attached to which row in the second dataframe:

2.the input data, where the features will be added to.

Imagine the following situation: You want to classify 10 different financial shares and you have their develop-
ment in the last year as a time series. You would then start by creating features from the metainformation of the
shares, e.g. how long they were on the market etc. and filling up a table - the features of one stock in one row.

>>> df = pandas.DataFrame()
>>> # Fill in the information of the stocks
>>> df["started_since_days"] = 0 # add a feature

You can then extract all the features from the time development of the shares, by using this estimator:

>>> time_series = read_in_timeseries() # get the development of the shares
>>> from tsfresh.transformers import FeatureAugmenter
>>> augmenter = FeatureAugmenter()
>>> augmenter.set_timeseries_container(time_series)
>>> df_with_time_series_features = augmenter.transform(df)

The settings for the feature calculation can be controlled with the settings object. If you pass None, the default
settings are used. Please refer to ComprehensiveFCParameters for more information.

40 Chapter 1. Contents

http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator
http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin

tsfresh Documentation, Release 0.10.0

This estimator does not select the relevant features, but calculates and adds all of them to the DataFrame. See
the RelevantFeatureAugmenter for calculating and selecting features.

For a description what the parameters column_id, column_sort, column_kind and column_value mean, please
see extraction.

fit(X=None, y=None)
The fit function is not needed for this estimator. It just does nothing and is here for compatibility reasons.

Parameters

• X (Any) – Unneeded.

• y (Any) – Unneeded.

Returns The estimator instance itself

Return type FeatureAugmenter

set_timeseries_container(timeseries_container)
Set the timeseries, with which the features will be calculated. For a format of the time series container,
please refer to extraction. The timeseries must contain the same indices as the later DataFrame, to
which the features will be added (the one you will pass to transform()). You can call this function as
often as you like, to change the timeseries later (e.g. if you want to extract for different ids).

Parameters timeseries_container (pandas.DataFrame or dict) – The time-
series as a pandas.DataFrame or a dict. See extraction for the format.

Returns None

Return type None

transform(X)
Add the features calculated using the timeseries_container and add them to the corresponding rows in the
input pandas.DataFrame X.

To save some computing time, you should only include those time serieses in the container, that you need.
You can set the timeseries container with the method set_timeseries_container().

Parameters X (pandas.DataFrame) – the DataFrame to which the calculated timeseries
features will be added. This is not the dataframe with the timeseries itself.

Returns The input DataFrame, but with added features.

Return type pandas.DataFrame

tsfresh.transformers.feature_selector module

class tsfresh.transformers.feature_selector.FeatureSelector(test_for_binary_target_binary_feature=’fisher’,
test_for_binary_target_real_feature=’mann’,
test_for_real_target_binary_feature=’mann’,
test_for_real_target_real_feature=’kendall’,
fdr_level=0.05,
hypothe-
ses_independent=False,
n_jobs=2, chunk-
size=None,
ml_task=’auto’)

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Sklearn-compatible estimator, for reducing the number of features in a dataset to only those, that are relevant
and significant to a given target. It is basically a wrapper around check_fs_sig_bh().

1.3. tsfresh 41

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/constants.html#None
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator
http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin

tsfresh Documentation, Release 0.10.0

The check is done by testing the hypothesis

𝐻0 = the Feature is not relevant and can not be added‘

against

𝐻1 = the Feature is relevant and should be kept

using several statistical tests (depending on whether the feature or/and the target is binary or not). Using the
Benjamini Hochberg procedure, only features in 𝐻0 are rejected.

This estimator - as most of the sklearn estimators - works in a two step procedure. First, it is fitted on training
data, where the target is known:

>>> import pandas as pd
>>> X_train, y_train = pd.DataFrame(), pd.Series() # fill in with your features
→˓and target
>>> from tsfresh.transformers import FeatureSelector
>>> selector = FeatureSelector()
>>> selector.fit(X_train, y_train)

In this example the list of relevant features is empty: >>> selector.relevant_features >>> []

The same holds for the feature importance: >>> selector.feature_importances_ >>> array([], dtype=float64)

The estimator keeps track on those features, that were relevant in the training step. If you apply the estimator
after the training, it will delete all other features in the testing data sample:

>>> X_test = pd.DataFrame()
>>> X_selected = selector.transform(X_test)

After that, X_selected will only contain the features that were relevant during the training.

If you are interested in more information on the features, you can look into the member relevant_features
after the fit.

fit(X, y)
Extract the information, which of the features are relevent using the given target.

For more information, please see the check_fs_sig_bh() function. All columns in the input data
sample are treated as feature. The index of all rows in X must be present in y.

Parameters

• X (pandas.DataFrame or numpy.array) – data sample with the features, which
will be classified as relevant or not

• y (pandas.Series or numpy.array) – target vector to be used, to classify the
features

Returns the fitted estimator with the information, which features are relevant

Return type FeatureSelector

transform(X)
Delete all features, which were not relevant in the fit phase.

Parameters X (pandas.DataSeries or numpy.array) – data sample with all fea-
tures, which will be reduced to only those that are relevant

Returns same data sample as X, but with only the relevant features

Return type pandas.DataFrame or numpy.array

42 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array

tsfresh Documentation, Release 0.10.0

tsfresh.transformers.per_column_imputer module

class tsfresh.transformers.per_column_imputer.PerColumnImputer(col_to_NINF_repl_preset=None,
col_to_PINF_repl_preset=None,
col_to_NAN_repl_preset=None)

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Sklearn-compatible estimator, for column-wise imputing DataFrames by replacing all NaNs and infs with
with average/extreme values from the same columns. It is basically a wrapper around impute().

Each occurring inf or NaN in the DataFrame is replaced by

•-inf -> min

•+inf -> max

•NaN -> median

This estimator - as most of the sklearn estimators - works in a two step procedure. First, the .fit function is
called where for each column the min, max and median are computed. Secondly, the .transform function
is called which replaces the occurances of NaNs and infs using the column-wise computed min, max and
median values.

fit(X, y=None)
Compute the min, max and median for all columns in the DataFrame. For more information, please see
the get_range_values_per_column() function.

Parameters

• X (pandas.DataFrame) – DataFrame to calculate min, max and median values on

• y (Any) – Unneeded.

Returns the estimator with the computed min, max and median values

Return type Imputer

transform(X)
Column-wise replace all NaNs, -inf and +inf in the DataFrame X with average/extreme values from
the provided dictionaries.

Parameters X (pandas.DataFrame) – DataFrame to impute

Returns imputed DataFrame

Return type pandas.DataFrame

Raises RuntimeError – if the replacement dictionaries are still of None type. This can hap-
pen if the transformer was not fitted.

1.3. tsfresh 43

http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator
http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame

tsfresh Documentation, Release 0.10.0

tsfresh.transformers.relevant_feature_augmenter module

class tsfresh.transformers.relevant_feature_augmenter.RelevantFeatureAugmenter(filter_only_tsfresh_features=True,
de-
fault_fc_parameters=None,
kind_to_fc_parameters=None,
col-
umn_id=None,
col-
umn_sort=None,
col-
umn_kind=None,
col-
umn_value=None,
time-
series_container=None,
chunk-
size=None,
n_jobs=2,
show_warnings=False,
dis-
able_progressbar=False,
pro-
file=False,
pro-
fil-
ing_filename=’profile.txt’,
pro-
fil-
ing_sorting=’cumulative’,
test_for_binary_target_binary_feature=’fisher’,
test_for_binary_target_real_feature=’mann’,
test_for_real_target_binary_feature=’mann’,
test_for_real_target_real_feature=’kendall’,
fdr_level=0.05,
hy-
pothe-
ses_independent=False,
ml_task=’auto’)

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Sklearn-compatible estimator to calculate relevant features out of a time series and add them to a data sample.

As many other sklearn estimators, this estimator works in two steps:

In the fit phase, all possible time series features are calculated using the time series, that is set by
the set_timeseries_container function (if the features are not manually changed by handing in a fea-
ture_extraction_settings object). Then, their significance and relevance to the target is computed using statistical
methods and only the relevant ones are selected using the Benjamini Hochberg procedure. These features are
stored internally.

In the transform step, the information on which features are relevant from the fit step is used and those features
are extracted from the time series. These extracted features are then added to the input data sample.

This estimator is a wrapper around most of the functionality in the tsfresh package. For more information on
the subtasks, please refer to the single modules and functions, which are:

44 Chapter 1. Contents

http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator
http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin

tsfresh Documentation, Release 0.10.0

•Settings for the feature extraction: ComprehensiveFCParameters

•Feature extraction method: extract_features()

•Extracted features: feature_calculators

•Feature selection: check_fs_sig_bh()

This estimator works analogue to the FeatureAugmenter with the difference that this estimator does only
output and calculate the relevant features, whereas the other outputs all features.

Also for this estimator, two datasets play a crucial role:

1.the time series container with the timeseries data. This container (for the format see extraction)
contains the data which is used for calculating the features. It must be groupable by ids which are used to
identify which feature should be attached to which row in the second dataframe:

2.the input data, where the features will be added to.

Imagine the following situation: You want to classify 10 different financial shares and you have their develop-
ment in the last year as a time series. You would then start by creating features from the metainformation of the
shares, e.g. how long they were on the market etc. and filling up a table - the features of one stock in one row.

>>> # Fill in the information of the stocks and the target
>>> X_train, X_test, y_train = pd.DataFrame(), pd.DataFrame(), pd.Series()

You can then extract all the relevant features from the time development of the shares, by using this estimator:

>>> train_time_series, test_time_series = read_in_timeseries() # get the
→˓development of the shares
>>> from tsfresh.transformers import RelevantFeatureAugmenter
>>> augmenter = RelevantFeatureAugmenter()
>>> augmenter.set_timeseries_container(train_time_series)
>>> augmenter.fit(X_train, y_train)
>>> augmenter.set_timeseries_container(test_time_series)
>>> X_test_with_features = augmenter.transform(X_test)

X_test_with_features will then contain the same information as X_test (with all the meta information you have
probably added) plus some relevant time series features calculated on the time series you handed in.

Please keep in mind that the time series you hand in before fit or transform must contain data for the rows that
are present in X.

If your set filter_only_tsfresh_features to True, your manually-created features that were present in X_train (or
X_test) before using this estimator are not touched. Otherwise, also those features are evaluated and may be
rejected from the data sample, because they are irrelevant.

For a description what the parameters column_id, column_sort, column_kind and column_value mean, please
see extraction.

You can control the feature extraction in the fit step (the feature extraction in the transform step is done automat-
ically) as well as the feature selection in the fit step by handing in settings. However, the default settings which
are used if you pass no flags are often quite sensible.

fit(X, y)
Use the given timeseries from set_timeseries_container() and calculate features from it and
add them to the data sample X (which can contain other manually-designed features).

Then determine which of the features of X are relevant for the given target y. Store those relevant features
internally to only extract them in the transform step.

If filter_only_tsfresh_features is True, only reject newly, automatically added features. If it is False, also
look at the features that are already present in the DataFrame.

1.3. tsfresh 45

tsfresh Documentation, Release 0.10.0

Parameters

• X (pandas.DataFrame or numpy.array) – The data frame without the time se-
ries features. The index rows should be present in the timeseries and in the target vector.

• y (pandas.Series or numpy.array) – The target vector to define, which features
are relevant.

Returns the fitted estimator with the information, which features are relevant.

Return type RelevantFeatureAugmenter

set_timeseries_container(timeseries_container)
Set the timeseries, with which the features will be calculated. For a format of the time series container,
please refer to extraction. The timeseries must contain the same indices as the later DataFrame, to
which the features will be added (the one you will pass to transform() or fit()). You can call this
function as often as you like, to change the timeseries later (e.g. if you want to extract for different ids).

Parameters timeseries_container (pandas.DataFrame or dict) – The time-
series as a pandas.DataFrame or a dict. See extraction for the format.

Returns None

Return type None

transform(X)
After the fit step, it is known which features are relevant, Only extract those from the time series handed
in with the function set_timeseries_container().

If filter_only_tsfresh_features is False, also delete the irrelevant, already present features in the data frame.

Parameters X (pandas.DataFrame or numpy.array) – the data sample to add the rel-
evant (and delete the irrelevant) features to.

Returns a data sample with the same information as X, but with added relevant time series
features and deleted irrelevant information (only if filter_only_tsfresh_features is False).

Return type pandas.DataFrame

Module contents

The module transformers contains several transformers which can be used inside a sklearn pipeline.

tsfresh.utilities package

Submodules

tsfresh.utilities.dataframe_functions module

Utility functions for handling the DataFrame conversions to the internal normalized format (see
normalize_input_to_internal_representation) or on how to handle NaN and inf in the DataFrames.

tsfresh.utilities.dataframe_functions.check_for_nans_in_columns(df,
columns=None)

Helper function to check for NaN in the data frame and raise a ValueError if there is one.

Parameters

• df (pandas.DataFrame) – the pandas DataFrame to test for NaNs

46 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/constants.html#None
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame

tsfresh Documentation, Release 0.10.0

• columns (list) – a list of columns to test for NaNs. If left empty, all columns of the
DataFrame will be tested.

Returns None

Return type None

Raise ValueError of NaNs are found in the DataFrame.

tsfresh.utilities.dataframe_functions.get_range_values_per_column(df)
Retrieves the finite max, min and mean values per column in the DataFrame df and stores them in three dic-
tionaries. Those dictionaries col_to_max, col_to_min, col_to_median map the columnname to the maximal,
minimal or median value of that column.

If a column does not contain any finite values at all, a 0 is stored instead.

Parameters df (pandas.DataFrame) – the Dataframe to get columnswise max, min and me-
dian from

Returns Dictionaries mapping column names to max, min, mean values

Return type (dict, dict, dict)

tsfresh.utilities.dataframe_functions.impute(df_impute)
Columnwise replaces all NaNs and infs from the DataFrame df_impute with average/extreme values from the
same columns. This is done as follows: Each occurring inf or NaN in df_impute is replaced by

•-inf -> min

•+inf -> max

•NaN -> median

If the column does not contain finite values at all, it is filled with zeros.

This function modifies df_impute in place. After that, df_impute is guaranteed to not contain any non-finite
values. Also, all columns will be guaranteed to be of type np.float64.

Parameters df_impute (pandas.DataFrame) – DataFrame to impute

Return df_impute imputed DataFrame

Rtype df_impute pandas.DataFrame

tsfresh.utilities.dataframe_functions.impute_dataframe_range(df_impute,
col_to_max,
col_to_min,
col_to_median)

Columnwise replaces all NaNs, -inf and +inf from the DataFrame df_impute with average/extreme values
from the provided dictionaries.

This is done as follows: Each occurring inf or NaN in df_impute is replaced by

•-inf -> by value in col_to_min

•+inf -> by value in col_to_max

•NaN -> by value in col_to_median

If a column of df_impute is not found in the one of the dictionaries, this method will raise a ValueError. Also, if
one of the values to replace is not finite a ValueError is returned

This function modifies df_impute in place. Afterwards df_impute is guaranteed to not contain any non-finite
values. Also, all columns will be guaranteed to be of type np.float64.

Parameters

1.3. tsfresh 47

https://docs.python.org/2.7/library/constants.html#None
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame

tsfresh Documentation, Release 0.10.0

• df_impute (pandas.DataFrame) – DataFrame to impute

• col_to_max (dict) – Dictionary mapping column names to max values

• col_to_min – Dictionary mapping column names to min values

• col_to_median – Dictionary mapping column names to median values

Return df_impute imputed DataFrame

Rtype df_impute pandas.DataFrame

Raises ValueError – if a column of df_impute is missing in col_to_max, col_to_min or
col_to_median or a value to replace is non finite

tsfresh.utilities.dataframe_functions.impute_dataframe_zero(df_impute)
Replaces all NaNs, -infs and +infs from the DataFrame df_impute with 0s. The df_impute will be modified
in place. All its columns will be into converted into dtype np.float64.

Parameters df_impute (pandas.DataFrame) – DataFrame to impute

Return df_impute imputed DataFrame

Rtype df_impute pandas.DataFrame

tsfresh.utilities.dataframe_functions.make_forecasting_frame(x, kind,
max_timeshift,
rolling_direction)

Takes a singular time series x and constructs a DataFrame df and target vector y that can be used for a time
series forecasting task.

The returned df will contain, for every time stamp in x, the last max_timeshift data points as a new time series,
such can be used to fit a time series forecasting model.

See Time series forecasting for a detailed description of the rolling process and how the feature matrix and target
vector are derived.

The returned time series container df, will contain the rolled time series as a flat data frame, the first format from
Data Formats.

When x is a pandas.Series, the index will be used as id.

Parameters

• x (np.array or pd.Series) – the singular time series

• kind (str) – the kind of the time series

• rolling_direction (int) – The sign decides, if to roll backwards (if sign is positive)
or forwards in “time”

• max_timeshift (int) – If not None, shift only up to max_timeshift. If None, shift as
often as possible.

Returns time series container df, target vector y

Return type (pd.DataFrame, pd.Series)

tsfresh.utilities.dataframe_functions.restrict_input_to_index(df_or_dict, col-
umn_id, index)

Restrict df_or_dict to those ids contained in index.

Parameters

• df_or_dict (pandas.DataFrame or dict) – a pandas DataFrame or a dictionary.

48 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/stdtypes.html#dict

tsfresh Documentation, Release 0.10.0

• column_id (basestring) – it must be present in the pandas DataFrame or in all
DataFrames in the dictionary. It is not allowed to have NaN values in this column.

• index (Iterable or pandas.Series) – Index containing the ids

Return df_or_dict_restricted the restricted df_or_dict

Rtype df_or_dict_restricted dict or pandas.DataFrame

Raise TypeError if df_or_dict is not of type dict or pandas.DataFrame

tsfresh.utilities.dataframe_functions.roll_time_series(df_or_dict, column_id,
column_sort, col-
umn_kind, rolling_direction,
max_timeshift=None)

This method creates sub windows of the time series. It rolls the (sorted) data frames for each kind and each id
separately in the “time” domain (which is represented by the sort order of the sort column given by column_sort).

For each rolling step, a new id is created by the scheme “id={id}, shift={shift}”, here id is the former id of the
column and shift is the amount of “time” shifts.

A few remarks:

•This method will create new IDs!

•The sign of rolling defines the direction of time rolling, a positive value means we are going back in time

•It is possible to shift time series of different lengths but

•We assume that the time series are uniformly sampled

•For more information, please see Time series forecasting.

Parameters

• df_or_dict (pandas.DataFrame or dict) – a pandas DataFrame or a dictionary.
The required shape/form of the object depends on the rest of the passed arguments.

• column_id (basestring or None) – it must be present in the pandas DataFrame or
in all DataFrames in the dictionary. It is not allowed to have NaN values in this column.

• column_sort (basestring or None) – if not None, sort the rows by this column.
It is not allowed to have NaN values in this column.

• column_kind (basestring or None) – It can only be used when passing a pandas
DataFrame (the dictionary is already assumed to be grouped by the kind). Is must be present
in the DataFrame and no NaN values are allowed. If the kind column is not passed, it
is assumed that each column in the pandas DataFrame (except the id or sort column) is a
possible kind.

• rolling_direction (int) – The sign decides, if to roll backwards or forwards in
“time”

• max_timeshift (int) – If not None, shift only up to max_timeshift. If None, shift as
often as possible.

Returns The rolled data frame or dictionary of data frames

Return type the one from df_or_dict

tsfresh.utilities.profiling module

Contains methods to start and stop the profiler that checks the runtime of the different feature calculators

1.3. tsfresh 49

https://docs.python.org/2.7/library/functions.html#basestring
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#basestring
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#basestring
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#basestring
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int

tsfresh Documentation, Release 0.10.0

tsfresh.utilities.profiling.end_profiling(profiler, filename, sorting=None)
Helper function to stop the profiling process and write out the profiled data into the given filename. Before this,
sort the stats by the passed sorting.

Parameters

• profiler (cProfile.Profile) – An already started profiler (probably by
start_profiling).

• filename (basestring) – The name of the output file to save the profile.

• sorting (basestring) – The sorting of the statistics passed to the sort_stats function.

Returns None

Return type None

Start and stop the profiler with:

>>> profiler = start_profiling()
>>> # Do something you want to profile
>>> end_profiling(profiler, "out.txt", "cumulative")

tsfresh.utilities.profiling.start_profiling()
Helper function to start the profiling process and return the profiler (to close it later).

Returns a started profiler.

Return type cProfile.Profile

Start and stop the profiler with:

>>> profiler = start_profiling()
>>> # Do something you want to profile
>>> end_profiling(profiler, "cumulative", "out.txt")

tsfresh.utilities.string_manipulation module

tsfresh.utilities.string_manipulation.convert_to_output_format(param)
Helper function to convert parameters to a valid string, that can be used in a column name. Does the opposite
which is used in the from_columns function.

The parameters are sorted by their name and written out in the form

<param name>_<param value>__<param name>_<param value>__ ...

If a <param_value> is a string, this method will wrap it with parenthesis ”, so “<param_value>”

Parameters param (dict) – The dictionary of parameters to write out

Returns The string of parsed parameters

Return type str

tsfresh.utilities.string_manipulation.get_config_from_string(parts)
Helper function to extract the configuration of a certain function from the column name. The column name parts
(split by “__”) should be passed to this function. It will skip the kind name and the function name and only use
the parameter parts. These parts will be split up on “_” into the parameter name and the parameter value. This
value is transformed into a python object (for example is “(1, 2, 3)” transformed into a tuple consisting of the
ints 1, 2 and 3).

Returns None of no parameters are in the column name.

50 Chapter 1. Contents

https://docs.python.org/2.7/library/functions.html#basestring
https://docs.python.org/2.7/library/functions.html#basestring
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/stdtypes.html#dict
https://docs.python.org/2.7/library/functions.html#str

tsfresh Documentation, Release 0.10.0

Parameters parts (list) – The column name split up on “__”

Returns a dictionary with all parameters, which are encoded in the column name.

Return type dict

Module contents

This utilities submodule contains several utility functions. Those should only be used internally inside tsfresh.

Submodules

tsfresh.defaults module

Module contents

At the top level we export the three most important submodules of tsfresh, which are:

• extract_features

• select_features

• extract_relevant_features

Data Formats

tsfresh offers three different options to specify the time series data to be used in the tsfresh.
extract_features() function (and all utility functions that expect a time series, e.g. the tsfresh.
utilities.dataframe_functions.roll_time_series() function).

Irrespective of the input format, tsfresh will always return the calculated features in the same output format described
below.

All three input format options consist of pandas.DataFrame objects. There are four important column types that
make up those DataFrames. Each will be described with an example from the robot failures dataset (see Quick Start).

Mandatory:

column_id This column indicates which entities the time series belong to. Features will be extracted
individually for each entity. The resulting feature matrix will contain one row per entity. Each robot
is a different entity, so each of it has a different id.

column_value This column contains the actual values of the time series. This corresponds to the mea-
sured values for different the sensors on the robots.

Optional (but strongly recommended to specify if you have this column):

column_sort This column contains values which allow to sort the time series (e.g. time stamps). It is not
required to have equidistant time steps or the same time scale for the different ids and/or kinds. If
you omit this column, the DataFrame is assumed to be already sorted in increasing order. The robot
sensor measurements each have a time stamp which is used in this column.

Please note that none of the algorithms of tsfresh uses the actual values in this time column - but
only their sorting order.

Optional:

1.4. Data Formats 51

https://docs.python.org/2.7/library/stdtypes.html#dict
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame

tsfresh Documentation, Release 0.10.0

column_kind This column indicates the names of the different time series types (E.g. different sensors
in an industrial application as in the robot dataset). For each kind of time series the features are
calculated individually.

Important: None of these columns is allowed to contain any NaN, Inf or -Inf values.

In the following we describe the different input formats, that are build on those columns:

• A flat DataFrame

• A stacked DataFrame

• A dictionary of flat DataFrames

The difference between a flat and a stacked DataFrame is indicated by specifying or not specifying the parameters
column_value and column_kind in the tsfresh.extract_features() function.

If you do not know which one to choose, you probably want to try out the flat or stacked DataFrame.

Input Option 1. Flat DataFrame

If both column_value and column_kind are set to None, the time series data is assumed to be in a flat DataFrame. This
means that each different time series must be saved as its own column.

Example: Imagine you record the values of time series x and y for different objects A and B for three different times
t1, t2 and t3. Now you want to calculate some feature with tsfresh. Your resulting DataFrame may look like this:

id time x y
A t1 x(A, t1) y(A, t1)
A t2 x(A, t2) y(A, t2)
A t3 x(A, t3) y(A, t3)
B t1 x(B, t1) y(B, t1)
B t2 x(B, t2) y(B, t2)
B t3 x(B, t3) y(B, t3)

and you would pass

column_id="id", column_sort="time", column_kind=None, column_value=None

to the extraction functions, to extract features separately for all ids and separately for the x and y values.

Input Option 2. Stacked DataFrame

If both column_value and column_kind are set, the time series data is assumed to be a stacked DataFrame. This means
that there are no different columns for the different types of time series. This representation has several advantages
over the flat Data Frame. For example, the time stamps of the different time series do not have to align.

It does not contain different columns for the different types of time series but only one value column and a kind
column. The example from above would look like this:

52 Chapter 1. Contents

tsfresh Documentation, Release 0.10.0

id time kind value
A t1 x x(A, t1)
A t2 x x(A, t2)
A t3 x x(A, t3)
A t1 y y(A, t1)
A t2 y y(A, t2)
A t3 y y(A, t3)
B t1 x x(B, t1)
B t2 x x(B, t2)
B t3 x x(B, t3)
B t1 y y(B, t1)
B t2 y y(B, t2)
B t3 y y(B, t3)

Then you would set

column_id="id", column_sort="time", column_kind="kind", column_value="value"

to end up with the same extracted features as above.

Input Option 3. Dictionary of flat DataFrames

Instead of passing a DataFrame which must be split up by its different kinds by tsfresh, you can also give a dictionary
mapping from the kind as string to a DataFrame containing only the time series data of that kind. So essentially you
are using a singular DataFrame for each kind of time series.

The data from the example can be split into two DataFrames resulting in the following dictionary

{ “x”:

id time value
A t1 x(A, t1)
A t2 x(A, t2)
A t3 x(A, t3)
B t1 x(B, t1)
B t2 x(B, t2)
B t3 x(B, t3)

, “y”:

id time value
A t1 y(A, t1)
A t2 y(A, t2)
A t3 y(A, t3)
B t1 y(B, t1)
B t2 y(B, t2)
B t3 y(B, t3)

}

You would pass this dictionary to tsfresh together with the following arguments:

column_id="id", column_sort="time", column_kind=None, column_value="value":

In this case we do not need to specify the kind column as the kind is the respective dictionary key.

1.4. Data Formats 53

tsfresh Documentation, Release 0.10.0

Output Format

The resulting feature matrix for all three input options will be the same. It will always be a pandas.DataFrame
with the following layout

id x_feature_1 ... x_feature_N y_feature_1 ... y_feature_N
A
B

where the x features are calculated using all x values (independently for A and B), y features using all y values and so
on.

This form of DataFrame is also the expected input format to the feature selection algorithms (e.g. the tsfresh.
select_features() function).

scikit-learn Transformers

tsfresh includes three scikit-learn compatible transformers. You can easily add them to your existing data science
pipeline. If you are not familiar with scikit-learn’s pipeline we recommend you take a look at the official documenta-
tion1.

The purpose of such a pipeline is to assemble several preprocessing steps that can be cross-validated together while
setting different parameters. Our tsfresh transformer allows you to extract and filter the time series features during
such a preprocessing sequence.

The first two estimators contained in tsfresh are the FeatureAugmenter, which extracts the features, and the
FeatureSelector, which only performs the feature selection algorithm. It is preferable to combine extract-
ing and filtering of the features in a single step to avoid unnecessary feature calculations. Hence, we have the
RelevantFeatureAugmenter, which combines both the extraction and filtering of the features in a single step.

Example

In the following example you see how we combine tsfresh’s RelevantFeatureAugmenter and a
RandomForestClassifier into a single pipeline. This pipeline can then fit both our transformer and the classi-
fier in one step.

from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from tsfresh.examples import load_robot_execution_failures
from tsfresh.transformers import RelevantFeatureAugmenter

pipeline = Pipeline([('augmenter', RelevantFeatureAugmenter(column_id='id', column_
→˓sort='time')),

('classifier', RandomForestClassifier())])

df_ts, y = load_robot_execution_failures()
X = pd.DataFrame(index=y.index)

pipeline.set_params(augmenter__timeseries_container=df_ts)
pipeline.fit(X, y)

The parameters of the augment transformer correspond to the parameters of the top-level convenience function
extract_relevant_features(). In the example, we only set the names of two columns column_id='id',
column_sort='time' (see Data Formats for an explanation of those parameters).

1 http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

54 Chapter 1. Contents

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

tsfresh Documentation, Release 0.10.0

Because we cannot pass the time series container directly as a parameter to the augmenter step when calling
fit or transform on a sklearn.pipeline.Pipeline we have to set it manually by calling pipeline.
set_params(augmenter__timeseries_container=df_ts). In general, you can change the time series
container from which the features are extracted by calling either the pipeline’s set_params() method or the trans-
formers set_timeseries_container() method.

For further examples, see the Jupyter Notebook pipeline_example.ipynb in the notebooks folder of the tsfresh package.

References

Overview on extracted features

tsfresh calculates a comprehensive number of features. All feature calculators are contained in the

tsfresh.feature_extraction.
feature_calculators

This module contains the feature calculators that take time
series as input and calculate the values of the feature.

abs_energy(x) Returns the absolute energy of the time series which is the
sum over the squared values

absolute_sum_of_changes(x) Returns the sum over the absolute value of consecutive
changes in the series x

acf(x[, unbiased, nlags, qstat, fft, alpha, ...]) Autocorrelation function for 1d arrays.
adfuller(x[, maxlag, regression, autolag, ...]) Augmented Dickey-Fuller unit root test
agg_autocorrelation(x, param) Calculates the value of an aggregation function f_agg (e.g.
agg_linear_trend(x, param) Calculates a linear least-squares regression for values of the

time series that were aggregated over chunks versus the se-
quence from 0 up to the number of chunks minus one.

approximate_entropy(x, m, r) Implements a vectorized Approximate entropy algorithm.
ar_coefficient(x, param) This feature calculator fits the unconditional maximum

likelihood of an autoregressive AR(k) process.
augmented_dickey_fuller(x, param) The Augmented Dickey-Fuller test is a hypothesis test

which checks whether a unit root is present in a time se-
ries sample.

autocorrelation(x, lag) Calculates the autocorrelation of the specified lag, accord-
ing to the formula [1]

binned_entropy(x, max_bins) First bins the values of x into max_bins equidistant bins.
c3(x, lag) This function calculates the value of
change_quantiles(x, ql, qh, isabs, f_agg) First fixes a corridor given by the quantiles ql and qh of the

distribution of x.
count_above_mean(x) Returns the number of values in x that are higher than the

mean of x
count_below_mean(x) Returns the number of values in x that are lower than the

mean of x
cwt(data, wavelet, widths) Continuous wavelet transform.
cwt_coefficients(x, param) Calculates a Continuous wavelet transform for the Ricker

wavelet, also known as the “Mexican hat wavelet” which is
energy_ratio_by_chunks(x, param) Calculates the sum of squares of chunk i out of N chunks

expressed as a ratio with the sum of squares over the whole
Continued on next page

1.6. Overview on extracted features 55

http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

tsfresh Documentation, Release 0.10.0

Table 1.2 – continued from previous page
fft_coefficient(x, param) Calculates the fourier coefficients of the one-dimensional

discrete Fourier Transform for real input by fast
find_peaks_cwt(vector, widths[, wavelet, ...]) Attempt to find the peaks in a 1-D array.
first_location_of_maximum(x) Returns the first location of the maximum value of x.
first_location_of_minimum(x) Returns the first location of the minimal value of x.
friedrich_coefficients(x, param) Coefficients of polynomial ℎ(𝑥), which has been fitted to
has_duplicate(x) Checks if any value in x occurs more than once
has_duplicate_max(x) Checks if the maximum value of x is observed more than

once
has_duplicate_min(x) Checks if the minimal value of x is observed more than

once
index_mass_quantile(x, param) Those apply features calculate the relative index i where

q% of the mass of the time series x lie left of i.
kurtosis(x) Returns the kurtosis of x (calculated with the adjusted

Fisher-Pearson standardized moment coefficient G2).
large_standard_deviation(x, r) Boolean variable denoting if the standard dev of x is higher

than ‘r’ times the range = difference between max and min
of x.

last_location_of_maximum(x) Returns the relative last location of the maximum value of
x.

last_location_of_minimum(x) Returns the last location of the minimal value of x.
length(x) Returns the length of x
linear_trend(x, param) Calculate a linear least-squares regression for the values of

the time series versus the sequence from 0 to length of the
time series minus one.

linregress(x[, y]) Calculate a linear least-squares regression for two sets of
measurements.

longest_strike_above_mean(x) Returns the length of the longest consecutive subsequence
in x that is bigger than the mean of x

longest_strike_below_mean(x) Returns the length of the longest consecutive subsequence
in x that is smaller than the mean of x

max_langevin_fixed_point(x, r, m) Largest fixed point of dynamics :math:argmax_x {h(x)=0}‘
estimated from polynomial ℎ(𝑥),

maximum(x) Calculates the highest value of the time series x.
mean(x) Returns the mean of x
mean_abs_change(x) Returns the mean over the absolute differences between

subsequent time series values which is
mean_change(x) Returns the mean over the absolute differences between

subsequent time series values which is
mean_second_derivate_central(x) Returns the mean value of a central approximation of the

second derivative
median(x) Returns the median of x
minimum(x) Calculates the lowest value of the time series x.
number_crossing_m(x, m) Calculates the number of crossings of x on m.
number_cwt_peaks(x, n) This feature calculator searches for different peaks in x.
number_peaks(x, n) Calculates the number of peaks of at least support n in the

time series x.
pacf(x[, nlags, method, alpha]) Partial autocorrelation estimated
partial_autocorrelation(x, param) Calculates the value of the partial autocorrelation function

at the given lag.
Continued on next page

56 Chapter 1. Contents

tsfresh Documentation, Release 0.10.0

Table 1.2 – continued from previous page
percentage_of_reoccurring_datapoints_to_all_datapoints(x)Returns the percentage of unique values, that are present in

the time series more than once.
percentage_of_reoccurring_values_to_all_values(x)Returns the ratio of unique values, that are present in the

time series more than once.
quantile(x, q) Calculates the q quantile of x.
range_count(x, min, max) Count observed values within the interval [min, max).
ratio_beyond_r_sigma(x, r) Ratio of values that are more than r*std(x) (so r sigma)

away from the mean of x.
ratio_value_number_to_time_series_length(x)Returns a factor which is 1 if all values in the time series

occur only once, and below one if this is not the case.
ricker(points, a) Return a Ricker wavelet, also known as the “Mexican hat

wavelet”.
sample_entropy(x) Calculate and return sample entropy of x.
set_property(key, value) This method returns a decorator that sets the property key

of the function to value
skewness(x) Returns the sample skewness of x (calculated with the

adjusted Fisher-Pearson standardized moment coefficient
G1).

spkt_welch_density(x, param) This feature calculator estimates the cross power spectral
density of the time series x at different frequencies.

standard_deviation(x) Returns the standard deviation of x
sum_of_reoccurring_data_points(x) Returns the sum of all data points, that are present in the

time series more than once.
sum_of_reoccurring_values(x) Returns the sum of all values, that are present in the time

series more than once.
sum_values(x) Calculates the sum over the time series values
symmetry_looking(x, param) Boolean variable denoting if the distribution of x looks

symmetric.
time_reversal_asymmetry_statistic(x, lag) This function calculates the value of
value_count(x, value) Count occurrences of value in time series x.
variance(x) Returns the variance of x
variance_larger_than_standard_deviation(x)Boolean variable denoting if the variance of x is greater

than its standard deviation.
welch(x[, fs, window, nperseg, noverlap, ...]) Estimate power spectral density using Welch’s method.

submodule.

The following, exhaustive list contains all features that are calculated in the current version of tsfresh:

abs_energy(x) Returns the absolute energy of the time series which is the
sum over the squared values

absolute_sum_of_changes(x) Returns the sum over the absolute value of consecutive
changes in the series x

acf(x[, unbiased, nlags, qstat, fft, alpha, ...]) Autocorrelation function for 1d arrays.
adfuller(x[, maxlag, regression, autolag, ...]) Augmented Dickey-Fuller unit root test
agg_autocorrelation(x, param) Calculates the value of an aggregation function f_agg (e.g.
agg_linear_trend(x, param) Calculates a linear least-squares regression for values of the

time series that were aggregated over chunks versus the se-
quence from 0 up to the number of chunks minus one.

approximate_entropy(x, m, r) Implements a vectorized Approximate entropy algorithm.
Continued on next page

1.6. Overview on extracted features 57

tsfresh Documentation, Release 0.10.0

Table 1.3 – continued from previous page
ar_coefficient(x, param) This feature calculator fits the unconditional maximum

likelihood of an autoregressive AR(k) process.
augmented_dickey_fuller(x, param) The Augmented Dickey-Fuller test is a hypothesis test

which checks whether a unit root is present in a time se-
ries sample.

autocorrelation(x, lag) Calculates the autocorrelation of the specified lag, accord-
ing to the formula [1]

binned_entropy(x, max_bins) First bins the values of x into max_bins equidistant bins.
c3(x, lag) This function calculates the value of
change_quantiles(x, ql, qh, isabs, f_agg) First fixes a corridor given by the quantiles ql and qh of the

distribution of x.
count_above_mean(x) Returns the number of values in x that are higher than the

mean of x
count_below_mean(x) Returns the number of values in x that are lower than the

mean of x
cwt(data, wavelet, widths) Continuous wavelet transform.
cwt_coefficients(x, param) Calculates a Continuous wavelet transform for the Ricker

wavelet, also known as the “Mexican hat wavelet” which is
energy_ratio_by_chunks(x, param) Calculates the sum of squares of chunk i out of N chunks

expressed as a ratio with the sum of squares over the whole
fft_coefficient(x, param) Calculates the fourier coefficients of the one-dimensional

discrete Fourier Transform for real input by fast
find_peaks_cwt(vector, widths[, wavelet, ...]) Attempt to find the peaks in a 1-D array.
first_location_of_maximum(x) Returns the first location of the maximum value of x.
first_location_of_minimum(x) Returns the first location of the minimal value of x.
friedrich_coefficients(x, param) Coefficients of polynomial ℎ(𝑥), which has been fitted to
has_duplicate(x) Checks if any value in x occurs more than once
has_duplicate_max(x) Checks if the maximum value of x is observed more than

once
has_duplicate_min(x) Checks if the minimal value of x is observed more than

once
index_mass_quantile(x, param) Those apply features calculate the relative index i where

q% of the mass of the time series x lie left of i.
kurtosis(x) Returns the kurtosis of x (calculated with the adjusted

Fisher-Pearson standardized moment coefficient G2).
large_standard_deviation(x, r) Boolean variable denoting if the standard dev of x is higher

than ‘r’ times the range = difference between max and min
of x.

last_location_of_maximum(x) Returns the relative last location of the maximum value of
x.

last_location_of_minimum(x) Returns the last location of the minimal value of x.
length(x) Returns the length of x
linear_trend(x, param) Calculate a linear least-squares regression for the values of

the time series versus the sequence from 0 to length of the
time series minus one.

linregress(x[, y]) Calculate a linear least-squares regression for two sets of
measurements.

longest_strike_above_mean(x) Returns the length of the longest consecutive subsequence
in x that is bigger than the mean of x

longest_strike_below_mean(x) Returns the length of the longest consecutive subsequence
in x that is smaller than the mean of x

Continued on next page

58 Chapter 1. Contents

tsfresh Documentation, Release 0.10.0

Table 1.3 – continued from previous page
max_langevin_fixed_point(x, r, m) Largest fixed point of dynamics :math:argmax_x {h(x)=0}‘

estimated from polynomial ℎ(𝑥),
maximum(x) Calculates the highest value of the time series x.
mean(x) Returns the mean of x
mean_abs_change(x) Returns the mean over the absolute differences between

subsequent time series values which is
mean_change(x) Returns the mean over the absolute differences between

subsequent time series values which is
mean_second_derivate_central(x) Returns the mean value of a central approximation of the

second derivative
median(x) Returns the median of x
minimum(x) Calculates the lowest value of the time series x.
number_crossing_m(x, m) Calculates the number of crossings of x on m.
number_cwt_peaks(x, n) This feature calculator searches for different peaks in x.
number_peaks(x, n) Calculates the number of peaks of at least support n in the

time series x.
pacf(x[, nlags, method, alpha]) Partial autocorrelation estimated
partial_autocorrelation(x, param) Calculates the value of the partial autocorrelation function

at the given lag.
percentage_of_reoccurring_datapoints_to_all_datapoints(x)Returns the percentage of unique values, that are present in

the time series more than once.
percentage_of_reoccurring_values_to_all_values(x)Returns the ratio of unique values, that are present in the

time series more than once.
quantile(x, q) Calculates the q quantile of x.
range_count(x, min, max) Count observed values within the interval [min, max).
ratio_beyond_r_sigma(x, r) Ratio of values that are more than r*std(x) (so r sigma)

away from the mean of x.
ratio_value_number_to_time_series_length(x)Returns a factor which is 1 if all values in the time series

occur only once, and below one if this is not the case.
ricker(points, a) Return a Ricker wavelet, also known as the “Mexican hat

wavelet”.
sample_entropy(x) Calculate and return sample entropy of x.
set_property(key, value) This method returns a decorator that sets the property key

of the function to value
skewness(x) Returns the sample skewness of x (calculated with the

adjusted Fisher-Pearson standardized moment coefficient
G1).

spkt_welch_density(x, param) This feature calculator estimates the cross power spectral
density of the time series x at different frequencies.

standard_deviation(x) Returns the standard deviation of x
sum_of_reoccurring_data_points(x) Returns the sum of all data points, that are present in the

time series more than once.
sum_of_reoccurring_values(x) Returns the sum of all values, that are present in the time

series more than once.
sum_values(x) Calculates the sum over the time series values
symmetry_looking(x, param) Boolean variable denoting if the distribution of x looks

symmetric.
time_reversal_asymmetry_statistic(x, lag) This function calculates the value of
value_count(x, value) Count occurrences of value in time series x.
variance(x) Returns the variance of x

Continued on next page

1.6. Overview on extracted features 59

tsfresh Documentation, Release 0.10.0

Table 1.3 – continued from previous page
variance_larger_than_standard_deviation(x)Boolean variable denoting if the variance of x is greater

than its standard deviation.
welch(x[, fs, window, nperseg, noverlap, ...]) Estimate power spectral density using Welch’s method.

Feature Calculation

Feature naming

tsfresh enforces a strict naming of the created features, which you have to follow whenever you create new feature cal-
culators. This is due to the tsfresh.feature_extraction.settings.from_columns() method which
needs to deduce the following information from the feature name

• the time series that was used to calculate the feature

• the feature calculator method that was used to derive the feature

• all parameters that have been used to calculate the feature (optional)

Hence, to enable the tsfresh.feature_extraction.settings.from_columns() to deduce all the nec-
essary conditions, the features will be named in the following format

{time_series_name}__{feature_name}__{parameter name 1}_{parameter value 1}__[..]__{parameter
name k}_{parameter value k}

(Here we assumed that {feature_name} has k parameters).

Examples for feature naming

So for example the following feature name

temperature_1__quantile__q_0.6

is the value of the feature tsfresh.feature_extraction.feature_calculators.quantile() for
the time series `temperature_1` and a parameter value of q=0.6. On the other hand, the feature named

Pressure 5__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_5

denotes the value of the feature tsfresh.feature_extraction.feature_calculators.
cwt_coefficients() for the time series `Pressure 5` under parameter values of widths=(2, 5,
10, 20), coeff=14 and w=5.

Feature extraction settings

When starting a new data science project involving time series you probably want to start by extracting a comprehen-
sive set of features. Later you can identify which features are relevant for the task at hand. In the final stages, you
probably want to fine tune the parameter of the features to fine tune your models.

You can do all those things with tsfresh. So, you need to know how to control which features are calculated by tsfresh
and how one can adjust the parameters. In this section, we will clarify this.

60 Chapter 1. Contents

tsfresh Documentation, Release 0.10.0

For the lazy: Just let me calculate some features

So, to just calculate a comprehensive set of features, call the tsfresh.extract_features() method without
passing a default_fc_parameters or kind_to_fc_parameters object, which means you are using the default options
(which will use all feature calculators in this package for what we think are sane default parameters).

For the advanced: How does I set the parameters for all kind of time series?

After digging deeper into your data, you maybe want to calculate more of a certain type of feature and less of another
type. So, you need to use custom settings for the feature extractors. To do that with tsfresh you will have to use a
custom settings object:

>>> from tsfresh.feature_extraction import ComprehensiveFCParameters
>>> settings = ComprehensiveFCParameters()
>>> # Set here the options of the settings object as shown in the paragraphs below
>>> # ...
>>> from tsfresh.feature_extraction import extract_features
>>> extract_features(df, default_fc_parameters=settings)

The default_fc_parameters is expected to be a dictionary, which maps feature calculator names (the function names
you can find in the tsfresh.feature_extraction.feature_calculators file) to a list of dictionaries,
which are the parameters with which the function will be called (as key value pairs). Each function parameter combi-
nation, that is in this dict will be called during the extraction and will produce a feature. If the function does not take
any parameters, the value should be set to None.

For example

fc_parameters = {
"length": None,
"large_standard_deviation": [{"r": 0.05}, {"r": 0.1}]

}

will produce three features: one by calling the tsfresh.feature_extraction.feature_calculators.
length() function without any parameters and two by calling tsfresh.feature_extraction.
feature_calculators.large_standard_deviation() with r = 0.05 and r = 0.1.

So you can control, which features will be extracted, by adding/removing either keys or parameters from this dict. It
is as easy as that. If you decide to not calculate the length feature here, you delete it from the dictionary:

del fc_parameters["length"]

And now, only the two other features are calculated.

For convenience, three dictionaries are predefined and can be used right away:

• tsfresh.feature_extraction.settings.ComprehensiveFCParameters: includes all fea-
tures without parameters and all features with parameters, each with different parameter combinations. This
is the default for extract_features if you do not hand in a default_fc_parameters at all.

• tsfresh.feature_extraction.settings.MinimalFCParameters: includes only a handful of
features and can be used for quick tests. The features which have the “minimal” attribute are used here.

• tsfresh.feature_extraction.settings.EfficientFCParameters: Mostly the same fea-
tures as in the tsfresh.feature_extraction.settings.ComprehensiveFCParameters, but
without features which are marked with the “high_comp_cost” attribute. This can be used if runtime perfor-
mance plays a major role.

1.8. Feature extraction settings 61

tsfresh Documentation, Release 0.10.0

Theoretically, you could calculate an unlimited number of features with tsfresh by adding entry after entry to the
dictionary.

For the ambitious: How do I set the parameters for different type of time series?

It is also possible, to control the features to be extracted for the different kinds of time series individually. You can do
so by passing another dictionary to the extract function as a

kind_to_fc_parameters = {“kind” : fc_parameters}

parameter. This dict must be a mapping from kind names (as string) to fc_parameters objects, which you would
normally pass as an argument to the default_fc_parameters parameter.

So, for example using

kind_to_fc_parameters = {
"temperature": {"mean": None},
"pressure": {"max": None, "min": None}

}

will extract the “mean” feature of the “temperature” time series and the “min” and “max” of the “pressure” time
series.

The kind_to_fc_parameters argument will partly override the default_fc_parameters. So, if you include a kind
name in the kind_to_fc_parameters parameter, its value will be used for that kind. Other kinds will still use the
default_fc_parameters.

A handy trick: Do I really have to create the dictionary by hand?

Not necessarily. let’s assume you have a DataFrame of tsfresh features. By using feature selection algorithms you find
out that only a subgroup of features is relevant.

Then, we provide the tsfresh.feature_extraction.settings.from_columns() method that con-
structs the kind_to_fc_parameters dictionary from the column names of this filtered feature matrix to make sure that
only relevant features are extracted.

This can save a huge amount of time because you prevent the calculation of uncessary features. Let’s illustrate that
with an example:

X_tsfresh containes the extracted tsfresh features
X_tsfresh = extract_features(...)

which are now filtered to only contain relevant features
X_tsfresh_filtered = some_feature_selection(X_tsfresh, y,)

we can easily construct the corresponding settings object
kind_to_fc_parameters = tsfresh.feature_extraction.settings.from_columns(X_tsfresh_
→˓filtered)

this will construct you the kind_to_fc_parameters dictionary that corresponds to the features and parameters (!) from
the tsfresh features that were filtered by the some_feature_selection feature selection algorithm.

62 Chapter 1. Contents

tsfresh Documentation, Release 0.10.0

Feature filtering

The all-relevant problem of feature selection is the identification of all strongly and weakly relevant attributes. This
problem is especially hard to solve for time series classification and regression in industrial applications such as
predictive maintenance or production line optimization, for which each label or regression target is associated with
several time series and meta-information simultaneously.

To limit the number of irrelevant features, tsfresh deploys the fresh algorithm (fresh stands for FeatuRe Extraction
based on Scalable Hypothesis tests)1.

The algorithm is called by tsfresh.feature_selection.relevance.
calculate_relevance_table(). It is an efficient, scalable feature extraction algorithm, which filters
the available features in an early stage of the machine learning pipeline with respect to their significance for the
classification or regression task, while controlling the expected percentage of selected but irrelevant features.

The filtering process consists of three phases which are sketched in the following figure:

Phase 1 - Feature extraction

Firstly, the algorithm characterizes time series with comprehensive and well-established feature mappings and consid-
ers additional features describing meta-information. The feature calculators used to derive the features are contained
in tsfresh.feature_extraction.feature_calculators.

In the figure from above, this corresponds to the change from raw time series to aggregated features.

Phase 2 - Feature significance testing

In a second step, each feature vector is individually and independently evaluated with respect to its signifi-
cance for predicting the target under investigation. Those tests are contained in the submodule tsfresh.

1 Christ, M., Kempa-Liehr, A.W. and Feindt, M. (2016). Distributed and parallel time series feature extraction for industrial big data applications.
ArXiv e-prints: 1610.07717 URL: http://adsabs.harvard.edu/abs/2016arXiv161007717C

1.9. Feature filtering 63

http://adsabs.harvard.edu/abs/2016arXiv161007717C

tsfresh Documentation, Release 0.10.0

feature_selection.significance_tests. The result of these tests is a vector of p-values, quantifying
the significance of each feature for predicting the label/target.

In the figure from above, this corresponds to the change from aggregated features to p-values.

Phase 3 - Multiple test procedure

The vector of p-values is evaluated on basis of the Benjamini-Yekutieli procedure2 in order to decide which fea-
tures to keep. This multiple testing procedure is contained in the submodule tsfresh.feature_selection.
benjamini_hochberg_test.

In the figure from above, this corresponds to the change from p-values to selected features.

References

How to add a custom feature

It may be beneficial to add a custom feature to those that are calculated by tsfresh. To do so, one has to follow four
simple steps:

Step 1. Decide which type of feature you want to implement

In tsfresh we differentiate between two types of feature calculation methods

1. simple

2. combiner

The difference lays in the number of calculated features for a singular time series. The feature_calculator returns either
one (1.) or multiple features (2.). So if you want to add a singular feature stick with 1., the simple feature calculator
class. If it is beneficial to calculate multiples features at the same time (to e.g. perform auxiliary calculations only
once for all features), stick with type 2..

Step 2. Write the feature calculator

Depending on which type of feature you are implementing, you can use the following feature calculator skeletons:

1. simple features

You can write such a simple feature calculator, that returns exactly one feature, without parameter

@set_property("fctype", "simple")
def your_feature_calculator(x):

"""
The description of your feature

:param x: the time series to calculate the feature of
:type x: pandas.Series

2 Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of statistics,
1165–1188

64 Chapter 1. Contents

tsfresh Documentation, Release 0.10.0

:return: the value of this feature
:return type: bool, int or float
"""
Calculation of feature as float, int or bool
f = f(x)
return f

or with parameter

@set_property("fctype", "simple"")
def your_feature_calculator(x, p1, p2, ...):

"""
Description of your feature

:param x: the time series to calculate the feature of
:type x: pandas.Series
:param p1: description of your parameter p1
:type p1: type of your parameter p1
:param p2: description of your parameter p2
:type p2: type of your parameter p2
...
:return: the value of this feature
:return type: bool, int or float
"""
Calculation of feature as float, int or bool
f = f(x)
return f

2. combiner features

@set_property("fctype", "combiner")
def your_feature_calculator(x, param):

"""
Description of your feature

:param x: the time series to calculate the feature of
:type x: pandas.Series
:param c: the time series name
:type c: str
:param param: contains dictionaries {"p1": x, "p2": y, ...} with p1 float, p2 int

→˓...
:type param: list
:return: list of tuples (s, f) where s are the parameters, serialized as a string,

→˓ and f the respective feature
value as bool, int or float

:return type: pandas.Series
"""
s is a function that serializes the config
f is a function that calculates the feature value for the config
return [(s(config), f(x, config)) for config in param]

After implementing the feature calculator, please add it to the tsfresh.feature_extraction.
feature_calculators submodule. tsfresh will only find feature calculators that are in this submodule.

1.10. How to add a custom feature 65

tsfresh Documentation, Release 0.10.0

Step 3. Add custom settings for your feature

Finally, you have to add custom settings if your feature is a simple or combiner feature with parameters. To do so,
just append your feature with sane default parameters to the name_to_param dictionary inside the tsfresh.
ComprehensiveFCParameters constructor:

name_to_param.update({
here are the existing settings
...
Now the settings of your feature calculator
"your_feature_calculator" = [{"p1": x, "p2": y, ...} for x,y in ...],

})

That is it, tsfresh will calculate your feature the next time you run it.

Please make sure, that the different feature extraction settings (e.g. tsfresh.
feature_extraction.settings.EfficientCParameters, tsfresh.feature_extraction.
settings.MinimalFCParameters or tsfresh.feature_extraction.settings.
ComprehensiveFCParameters) do include different sets of feature calculators to use. You can control,
which feature extraction settings object will include your new feature calculator by giving your function attributes
like “minimal” or “high_comp_cost”. Please see the classes in tsfresh.feature_extraction.settings
for more information.

Step 4. Add a pull request

We would very happy if you contribute your implemented features to tsfresh. So make sure to create a pull request at
our github page. We happily accept partly implemented features that we can finalize.

Parallelization

The feature extraction as well as the feature selection offer the possibility of parallelization. Out of the box both tasks
are parallelized by tsfresh. However, the overhead introduced with the parallelization should not be underestimated.
Here we discuss the different settings to control the parallelization. To achieve best results for your use-case you
should experiment with the parameters.

Please let us know about your results tuning the below mentioned parameters! It will help improve this document as
well as the default settings.

Parallelization of Feature Selection

We use a multiprocessing.Pool to parallelize the calculation of the p-values for each feature. On instantiation
we set the Pool’s number of worker processes to n_jobs. This field defaults to the number of processors on the current
system. We recommend setting it to the maximum number of available (and otherwise idle) processors.

The chunksize of the Pool’s map function is another important parameter to consider. It can be set via the chunksize
field. By default it is up to multiprocessing.Pool to decide on the chunksize.

Parallelization of Feature Extraction

For the feature extraction tsfresh exposes the parameters n_jobs and chunksize. Both behave analogue to the parameters
for the feature selection.

66 Chapter 1. Contents

https://github.com/blue-yonder/tsfresh

tsfresh Documentation, Release 0.10.0

To do performance studies and profiling, it sometimes quite useful to turn off parallelization at all. This can be setting
the parameter n_jobs to 0.

Time series forecasting

Features that are extracted with tsfresh can be used for many different tasks, such as time series classification, com-
pression or forecasting. This section explains how one can use the features for time series forecasting tasks.

The “sort” column of a DataFrame in the supported Data Formats gives a sequential state to the individual measure-
ments. In the case of time series this can be the time dimension while in the case of spectra the order is given by the
wavelength or frequency dimensions. We can exploit this sequence to generate more input data out of a single time
series, by rolling over the data.

Lets say you have the price of a certain stock, e.g. Apple, for 100 time steps. Now, you want to build a feature-based
model to forecast future prices of the Apple stock. So you will have to extract features in every time step of the original
time series while looking at a certain number of past values. A rolling mechanism will give you the sub time series of
last m time steps to construct the features.

The following image illustrates the process:

So, we move the window that extract the features and then predict the next time step (which was not used to extract
features) forward. In the above image, the window moves from left to right.

1.12. Time series forecasting 67

tsfresh Documentation, Release 0.10.0

Another example can be found in streaming data, e.g. in Industry 4.0 applications. Here you typically get one new
data row at a time and use this to for example predict machine failures. To train your model, you could act as if you
would stream the data, by feeding your classifier the data after one time step, the data after the first two time steps etc.

Both examples imply, that you extract the features not only on the full data set, but also on all tempo-
ral coherent subsets of data, which is the process of rolling. In tsfresh, this is implemented in the func-
tion tsfresh.utilities.dataframe_functions.roll_time_series(). Further, we provide the
tsfresh.utilities.dataframe_functions.make_forecasting_frame() method as a convenient
wrapper to fast construct the container and target vector for a given sequence.

The rolling mechanism

The rolling mechanism takes a time series 𝑥 with its data rows [𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑛] and creates 𝑛 new time series �̂�𝑘,
each of them with a different consecutive part of 𝑥:

�̂�𝑘 = [𝑥𝑘, 𝑥𝑘−1, 𝑥𝑘−2, ..., 𝑥1]

To see what this does in real-world applications, we look into the following example flat DataFrame in tsfresh format

id time x y
1 t1 1 5
1 t2 2 6
1 t3 3 7
1 t4 4 8
2 t8 10 12
2 t9 11 13

where you have measured the values from two sensors x and y for two different entities (id 1 and 2) in 4 or 2 time
steps (t1 to t9).

Now, we can use tsfresh.utilities.dataframe_functions.roll_time_series() to get consecu-
tive sub-time series. E.g. if you set rolling to 0, the feature extraction works on the original time series without any
rolling.

So it extracts 2 set of features,

id time x y
1 t1 1 5
1 t2 2 6
1 t3 3 7
1 t4 4 8

and

id time x y
2 t8 10 12
2 t9 11 13

If you set rolling to 1, the feature extraction works with all of the following time series:

id time x y
1 t1 1 5

id time x y
1 t1 1 5
1 t2 2 6

68 Chapter 1. Contents

tsfresh Documentation, Release 0.10.0

id time x y
1 t1 1 5
1 t2 2 6
1 t3 3 7
2 t8 10 12

id time x y
1 t1 1 5
1 t2 2 6
1 t3 3 7
1 t4 4 8
2 t8 10 12
2 t9 11 13

If you set rolling to -1, you end up with features for the time series, rolled in the other direction

id time x y
1 t4 4 8

id time x y
1 t3 3 7
1 t4 4 8

id time x y
1 t2 2 6
1 t3 3 7
1 t4 4 8
2 t9 11 13

id time x y
1 t1 1 5
1 t2 2 6
1 t3 3 7
1 t4 4 8
2 t8 10 12
2 t9 11 13

We only gave an example for the flat DataFrame format, but rolling actually works on all 3 Data Formats that are
supported by tsfresh.

This process is also visualized by the following figure. It shows how the purple, rolled sub-timeseries are used as base
for the construction of the feature matrix X (after calculation of the features by f). The green data points need to be
predicted by the model and are used as rows in the target vector y.

1.12. Time series forecasting 69

tsfresh Documentation, Release 0.10.0

Parameters and Implementation Notes

The above example demonstrates the overall rolling mechanism, which creates new time series. Now we discuss the
naming convention for such new time series:

For identifying every subsequence, tsfresh uses the time stamp of the point that will be predicted as new “id”. The
above example with rolling set to 1 yields the following sub-time series:

id time x y
t1 t1 1 5

id time x y
t2 t1 1 5
t2 t2 2 6

id time x y
t3 t1 1 5
t3 t2 2 6
t3 t3 3 7

id time x y
t4 t1 1 5
t4 t2 2 6
t4 t3 3 7
t4 t4 4 8

id time x y
t8 t8 10 12

id time x y
t9 t8 10 12
t9 t9 11 13

70 Chapter 1. Contents

tsfresh Documentation, Release 0.10.0

The new id is the time stamp where the shift ended. So above, every table represents a sub-time series. The higher the
shift value, the more steps the time series was moved into the specified direction (into the past in this example).

If you want to limit how far the time series shall be shifted into the specified direction, you can set the max_timeshift
parameter to the maximum time steps to be shifted. In our example, setting max_timeshift to 1 yields the following
result (setting it to 0 will create all possible shifts):

id time x y
t1 t1 1 5

id time x y
t2 t1 1 5
t2 t2 2 6

id time x y
t3 t2 2 6
t3 t3 3 7

id time x y
t4 t3 3 7
t4 t4 4 8

id time x y
t8 t8 10 12

id time x y
t9 t8 10 12
t9 t9 11 13

FAQ

1. Does tsfresh support different time series lengths?

Yes, it supports different time series lengths. However, some feature calculators can demand a minimal length
of the time series. If a shorter time series is passed to the calculator, a NaN is returned for those features.

2. Is it possible to extract features from rolling/shifted time series?

Yes, the tsfresh.dataframe_functions.roll_time_series() function allows to conviniently
create a rolled time series datframe from your data. You just have to transform your data into one of the supported
tsfresh Data Formats. Then, the tsfresh.dataframe_functions.roll_time_series() give you
a DataFrame with the rolled time series, that you can pass to tsfresh. On the following page you can find a
detailed description: Time series forecasting.

3. How can I use tsfresh with windows?

We recommend to use Anaconda. After installing, open the Anaconda Prompt, create an environment and set
up tsfresh (Please be aware that we’re using multiprocessing, which can be problematic.):

conda create -n ENV_NAME python=VERSION
conda install -n ENV_NAME pip requests numpy pandas scipy statsmodels patsy
→˓scikit-learn future six tqdm
activate ENV_NAME
pip install tsfresh

4. Does tsfresh support different sampling rates in the time series?

1.13. FAQ 71

https://www.continuum.io/downloads#windows
http://stackoverflow.com/questions/18204782/runtimeerror-on-windows-trying-python-multiprocessing

tsfresh Documentation, Release 0.10.0

Yes! The feature calculators in tsfresh do not care about the sampling frequency. You will have to
use the second input format, the stacked DataFramed (see Data Formats)

Authors

Core Development Team

• Maximilian Christ (maximilianchrist.com, max.christ@me.com)

• Nils Braun (nilslennartbraun@gmail.com)

• Julius Neuffer (julius.neuffer@blue-yonder.com)

Contributions

• Andreas W. Kempa-Liehr

• Markus Frey

• Niklas Haas

• earthgecko

• Moritz Gelb

• Thibault de Boissiere

• Brian Sang

• Stephan Müller

• Vin Tang

• Chris Chow

• Ezekiel Kruglick

• Timo Klerx

• Gregor Koehler

• Matúš Tomlein

• Florian Aspart

• Sergey Shepelev

• Justin White

• 10. Kleint

License

MIT LICENCE

Copyright (c) 2016 Maximilian Christ, Blue Yonder GmbH

Permission is hereby granted, free of charge, to any person obtaining a copy of this
→˓software and associated

72 Chapter 1. Contents

http://maximilianchrist.com
mailto:max.christ@me.com
mailto:nilslennartbraun@gmail.com
mailto:julius.neuffer@blue-yonder.com

tsfresh Documentation, Release 0.10.0

documentation files (the "Software"), to deal in the Software without restriction,
→˓including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
→˓copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
→˓conditions:

The above copyright notice and this permission notice shall be included in all copies
→˓or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
→˓INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
→˓IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
→˓ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
→˓OTHER DEALINGS IN THE SOFTWARE.

Changelog

tsfresh uses Semantic Versioning

Version 0.10.0

Title underline too short.

Version 0.10.0
=============

• new feature calculators:

– partial autocorrelation

• added list of calculated features to documentation

• added two ipython notebooks to

– illustrate PCA on features

– illustrate the Benjamini Yekutieli procedure

• fixed the following bugs

– improperly quotation of dickey fuller settings

Version 0.9.0

• new feature calculators:

– ratio_beyond_r_sigma

– energy_ratio_by_chunks

– number_crossing_m

1.16. Changelog 73

http://semver.org/

tsfresh Documentation, Release 0.10.0

– c3

– angle & abs for fft coefficients

– agg_autocorrelation

– p-Value and usedLag for augmented_dickey_fuller

– change_quantiles

• changed the calculation of the following features:

– fft_coefficients

– autocorrelation

– time_reversal_asymmetry_statistic

• removed the following feature calculators:

– large_number_of_peak

– mean_autocorrelation

– mean_abs_change_quantiles

• add support for multi classification in the feature selection

• improved description of the rolling mechanism

• added function make_forecasting_frame method for forecasting tasks

• internally ditched the pandas representation of the time series, yielding drastic speed improvements

• replaced feature calculator types from aggregate/aggregate with parameter/apply to simple/combiner

• add test for the ipython notebooks

• added notebook to inspect dft features

• make sure that RelevantFeatureAugmentor always imputes

• fixed the following bugs

– impute was replacing whole columns by mean

– fft coefficient were only calculated on truncated part

– allow to suppress warnings from impute function

– added missing lag in time_reversal_asymmetry_statistic

Version 0.8.1

• new features:

– linear trend

– agg trend

• new sklearn compatible transformers

– PerColumnImputer

• fixed bugs

– make mannwhitneyu method compatible with scipy > v0.18.0

• added caching to travis

74 Chapter 1. Contents

tsfresh Documentation, Release 0.10.0

• internally, added serial calculation of features

Version 0.8.0

• Breaking API changes:

– removing of feature extraction settings object, replaced by keyword arguments and a plain dictionary
(fc_parameters)

– removing of feature selection settings object, replaced by keyword arguments

• added notebook with examples of new API

• added chapter in docs about the new API

• adjusted old notebooks and documentation to new API

Version 0.7.1

• added a maximum shift parameter to the rolling utility

• added a FAQ entry about how to use tsfresh on windows

• drastically decreased the runtime of the following features

– cwt_coefficient

– index_mass_quantile

– number_peaks

– large_standard_deviation

– symmetry_looking

• removed baseline unit tests

• bugfixes:

– per sample parallel imputing was done on chunks which gave non deterministic results

– imputing on dtypes other that float32 did not work properly

• several improvements to documentation

Version 0.7.0

• new rolling utility to use tsfresh for time series forecasting tasks

• bugfixes:

– index_mass_quantile was using global index of time series container

– an index with same name as id_column was breaking parallelization

– friedrich_coefficients and max_langevin_fixed_point were occasionally stalling

1.16. Changelog 75

tsfresh Documentation, Release 0.10.0

Version 0.6.0

• progress bar for feature selection

• new feature: estimation of largest fixed point of deterministic dynamics

• new notebook: demonstration how to use tsfresh in a pipeline with train and test datasets

• remove no logging handler warning

• fixed bug in the RelevantFeatureAugmenter regarding the evaluate_only_added_features parameters

Version 0.5.0

• new example: driftbif simulation

• further improvements of the parallelization

• language improvements in the documentation

• performance improvements for some features

• performance improvements for the impute function

• new feature and feature renaming: sum_of_recurring_values, sum_of_recurring_data_points

Version 0.4.0

• fixed several bugs: checking of UCI dataset, out of index error for mean_abs_change_quantiles

• added a progress bar denoting the progress of the extraction process

• added parallelization per sample

• added unit tests for comparing results of feature extraction to older snapshots

• added “high_comp_cost” attribute

• added ReasonableFeatureExtraction settings only calculating features without “high_comp_cost” attribute

Version 0.3.1

• fixed several bugs: closing multiprocessing pools / index out of range cwt calculator / division by 0 in in-
dex_mass_quantile

• now all warnings are disabled by default

• for a singular type time series data, the name of value column is used as feature prefix

Version 0.3.0

• fixed bug with parsing of “NUMBER_OF_CPUS” environment variable

• now features are calculated in parallel for each type

76 Chapter 1. Contents

tsfresh Documentation, Release 0.10.0

Version 0.2.0

• now p-values are calculated in parallel

• fixed bugs for constant features

• allow time series columns to be named 0

• moved uci repository datasets to github mirror

• added feature calculator sample_entropy

• added MinimalFeatureExtraction settings

• fixed bug in calculation of fourier coefficients

Version 0.1.2

• added support for python 3.5.2

• fixed bug with the naming of the features that made the naming of features non-deterministic

Version 0.1.1

• mainly fixes for the read-the-docs documentation, the pypi readme and so on

Version 0.1.0

• Initial version :)

How to contribute

We want tsfresh to become the biggest archive of feature extraction methods in python. To achieve this goal, we need
your help!

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. If you
want to add one or two interesting feature calculators, implement a new feature selection process or just fix 1-2 typos,
your help is appreciated.

If you want to help, just create a pull request on our github page. To the new user, working with Git can sometimes be
confusing and frustrating. If you are not familiar with Git you can also contact us by email.

Guidelines

There are three general coding paradigms that we believe in:

1. Keep it simple. We believe that “Programs should be written for people to read, and only incidentally for
machines to execute.”.

2. Keep it documented by at least including a docstring for each method and class. Do not describe what you are
doing but why you are doing it.

3. Keep it tested. We aim for a high test coverage.

There are two important copyright guidelines:

1.17. How to contribute 77

tsfresh Documentation, Release 0.10.0

4. Please do not include any data sets for which a licence is not available or commercial use is even prohibited.
Those can undermine the licence of the whole projects.

5. Do not use code snippets for which a licence is not available (e.g. from stackoverflow) or commercial use is
even prohibited. Those can undermine the licence of the whole projects.

Further, there are some technical decisions we made:

6. Clear the Output of iPython notebooks. This improves the readability of related Git diffs.

Test framework

After making your changes, you probably want to test your changes locally. To run our comprehensive suite of unit
tests you have to install all the relevant python packages with

cd /path/to/tsfresh
pip install -r requirements.txt
pip install -r rdocs-requirements.txt
pip install -r test-requirements.txt
pip install -e .

The last command will dynamically link the tsfresh package which means that changes to the code will directly show
up for example in your test run.

Then, if you have everything installed, you can run the tests with

python setup.py test

or build the documentation with

python setup.py docs

The finished documentation can be found in the docs/_build/html folder.

On Github we use a Travis CI Folder that runs our test suite every time a commit or pull request is sent. The configu-
ration of Travi is controlled by the .travis.yml file.

We are looking forward to hear from you! =)

78 Chapter 1. Contents

https://github.com/blue-yonder/tsfresh/blob/master/.travis.yml

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

79

tsfresh Documentation, Release 0.10.0

80 Chapter 2. Indices and tables

CHAPTER 3

Acknowledgements

The research and development of TSFRESH was funded in part by the German Federal Ministry of Education and
Research under grant number 01IS14004 (project iPRODICT).

81

tsfresh Documentation, Release 0.10.0

82 Chapter 3. Acknowledgements

Python Module Index

t
tsfresh, 51
tsfresh.convenience, 11
tsfresh.convenience.relevant_extraction,

9
tsfresh.defaults, 51
tsfresh.examples, 14
tsfresh.examples.driftbif_simulation,

11
tsfresh.examples.har_dataset, 12
tsfresh.examples.robot_execution_failures,

13
tsfresh.examples.test_tsfresh_baseline_dataset,

13
tsfresh.feature_extraction, 33
tsfresh.feature_extraction.extraction,

14
tsfresh.feature_extraction.feature_calculators,

15
tsfresh.feature_extraction.settings, 31
tsfresh.feature_selection, 38
tsfresh.feature_selection.benjamini_hochberg_test,

33
tsfresh.feature_selection.relevance, 33
tsfresh.feature_selection.selection, 35
tsfresh.feature_selection.significance_tests,

37
tsfresh.scripts, 39
tsfresh.scripts.run_tsfresh, 39
tsfresh.scripts.test_timing, 39
tsfresh.transformers, 46
tsfresh.transformers.feature_augmenter,

40
tsfresh.transformers.feature_selector,

41
tsfresh.transformers.per_column_imputer,

43
tsfresh.transformers.relevant_feature_augmenter,

44

tsfresh.utilities, 51
tsfresh.utilities.dataframe_functions,

46
tsfresh.utilities.profiling, 49
tsfresh.utilities.string_manipulation,

50

83

tsfresh Documentation, Release 0.10.0

84 Python Module Index

Index

A
abs_energy() (in module ts-

fresh.feature_extraction.feature_calculators),
15

absolute_sum_of_changes() (in module ts-
fresh.feature_extraction.feature_calculators),
16

agg_autocorrelation() (in module ts-
fresh.feature_extraction.feature_calculators),
16

agg_linear_trend() (in module ts-
fresh.feature_extraction.feature_calculators),
16

approximate_entropy() (in module ts-
fresh.feature_extraction.feature_calculators),
17

ar_coefficient() (in module ts-
fresh.feature_extraction.feature_calculators),
17

augmented_dickey_fuller() (in module ts-
fresh.feature_extraction.feature_calculators),
17

autocorrelation() (in module ts-
fresh.feature_extraction.feature_calculators),
18

B
benjamini_hochberg_test() (in module ts-

fresh.feature_selection.benjamini_hochberg_test),
33

binned_entropy() (in module ts-
fresh.feature_extraction.feature_calculators),
18

C
c3() (in module tsfresh.feature_extraction.feature_calculators),

18
calculate_relevance_table() (in module ts-

fresh.feature_selection.relevance), 34

change_quantiles() (in module ts-
fresh.feature_extraction.feature_calculators),
19

check_for_nans_in_columns() (in module ts-
fresh.utilities.dataframe_functions), 46

combine_relevance_tables() (in module ts-
fresh.feature_selection.relevance), 35

ComprehensiveFCParameters (class in ts-
fresh.feature_extraction.settings), 31

convert_to_output_format() (in module ts-
fresh.utilities.string_manipulation), 50

count_above_mean() (in module ts-
fresh.feature_extraction.feature_calculators),
19

count_below_mean() (in module ts-
fresh.feature_extraction.feature_calculators),
19

cwt_coefficients() (in module ts-
fresh.feature_extraction.feature_calculators),
20

D
download_har_dataset() (in module ts-

fresh.examples.har_dataset), 12
download_json_dataset() (in module ts-

fresh.examples.test_tsfresh_baseline_dataset),
13

download_robot_execution_failures() (in module ts-
fresh.examples.robot_execution_failures),
13

E
EfficientFCParameters (class in ts-

fresh.feature_extraction.settings), 32
end_profiling() (in module tsfresh.utilities.profiling), 49
energy_ratio_by_chunks() (in module ts-

fresh.feature_extraction.feature_calculators),
20

extract_features() (in module ts-
fresh.feature_extraction.extraction), 14

85

tsfresh Documentation, Release 0.10.0

extract_relevant_features() (in module ts-
fresh.convenience.relevant_extraction), 9

F
FeatureAugmenter (class in ts-

fresh.transformers.feature_augmenter), 40
FeatureSelector (class in ts-

fresh.transformers.feature_selector), 41
fft_coefficient() (in module ts-

fresh.feature_extraction.feature_calculators),
20

first_location_of_maximum() (in module ts-
fresh.feature_extraction.feature_calculators),
21

first_location_of_minimum() (in module ts-
fresh.feature_extraction.feature_calculators),
21

fit() (tsfresh.transformers.feature_augmenter.FeatureAugmenter
method), 41

fit() (tsfresh.transformers.feature_selector.FeatureSelector
method), 42

fit() (tsfresh.transformers.per_column_imputer.PerColumnImputer
method), 43

fit() (tsfresh.transformers.relevant_feature_augmenter.RelevantFeatureAugmenter
method), 45

friedrich_coefficients() (in module ts-
fresh.feature_extraction.feature_calculators),
21

from_columns() (in module ts-
fresh.feature_extraction.settings), 32

G
get_config_from_string() (in module ts-

fresh.utilities.string_manipulation), 50
get_feature_type() (in module ts-

fresh.feature_selection.relevance), 35
get_range_values_per_column() (in module ts-

fresh.utilities.dataframe_functions), 47

H
has_duplicate() (in module ts-

fresh.feature_extraction.feature_calculators),
22

has_duplicate_max() (in module ts-
fresh.feature_extraction.feature_calculators),
22

has_duplicate_min() (in module ts-
fresh.feature_extraction.feature_calculators),
22

I
impute() (in module ts-

fresh.utilities.dataframe_functions), 47

impute_dataframe_range() (in module ts-
fresh.utilities.dataframe_functions), 47

impute_dataframe_zero() (in module ts-
fresh.utilities.dataframe_functions), 48

index_mass_quantile() (in module ts-
fresh.feature_extraction.feature_calculators),
22

infer_ml_task() (in module ts-
fresh.feature_selection.relevance), 35

K
kurtosis() (in module ts-

fresh.feature_extraction.feature_calculators),
22

L
large_standard_deviation() (in module ts-

fresh.feature_extraction.feature_calculators),
23

last_location_of_maximum() (in module ts-
fresh.feature_extraction.feature_calculators),
23

last_location_of_minimum() (in module ts-
fresh.feature_extraction.feature_calculators),
23

length() (in module ts-
fresh.feature_extraction.feature_calculators),
23

linear_trend() (in module ts-
fresh.feature_extraction.feature_calculators),
23

load_driftbif() (in module ts-
fresh.examples.driftbif_simulation), 11

load_har_classes() (in module ts-
fresh.examples.har_dataset), 12

load_har_dataset() (in module ts-
fresh.examples.har_dataset), 12

load_robot_execution_failures() (in module ts-
fresh.examples.robot_execution_failures),
13

longest_strike_above_mean() (in module ts-
fresh.feature_extraction.feature_calculators),
24

longest_strike_below_mean() (in module ts-
fresh.feature_extraction.feature_calculators),
24

M
main() (in module tsfresh.scripts.run_tsfresh), 39
make_forecasting_frame() (in module ts-

fresh.utilities.dataframe_functions), 48
max_langevin_fixed_point() (in module ts-

fresh.feature_extraction.feature_calculators),
24

86 Index

tsfresh Documentation, Release 0.10.0

maximum() (in module ts-
fresh.feature_extraction.feature_calculators),
24

mean() (in module ts-
fresh.feature_extraction.feature_calculators),
25

mean_abs_change() (in module ts-
fresh.feature_extraction.feature_calculators),
25

mean_change() (in module ts-
fresh.feature_extraction.feature_calculators),
25

mean_second_derivate_central() (in module ts-
fresh.feature_extraction.feature_calculators),
25

median() (in module ts-
fresh.feature_extraction.feature_calculators),
25

MinimalFCParameters (class in ts-
fresh.feature_extraction.settings), 32

minimum() (in module ts-
fresh.feature_extraction.feature_calculators),
26

N
number_crossing_m() (in module ts-

fresh.feature_extraction.feature_calculators),
26

number_cwt_peaks() (in module ts-
fresh.feature_extraction.feature_calculators),
26

number_peaks() (in module ts-
fresh.feature_extraction.feature_calculators),
26

P
partial_autocorrelation() (in module ts-

fresh.feature_extraction.feature_calculators),
27

percentage_of_reoccurring_datapoints_to_all_datapoints()
(in module ts-
fresh.feature_extraction.feature_calculators),
27

percentage_of_reoccurring_values_to_all_values()
(in module ts-
fresh.feature_extraction.feature_calculators),
27

PerColumnImputer (class in ts-
fresh.transformers.per_column_imputer),
43

plot_results() (in module tsfresh.scripts.test_timing), 39

Q
quantile() (in module ts-

fresh.feature_extraction.feature_calculators),
28

R
range_count() (in module ts-

fresh.feature_extraction.feature_calculators),
28

ratio_beyond_r_sigma() (in module ts-
fresh.feature_extraction.feature_calculators),
28

ratio_value_number_to_time_series_length() (in module
tsfresh.feature_extraction.feature_calculators),
28

RelevantFeatureAugmenter (class in ts-
fresh.transformers.relevant_feature_augmenter),
44

restrict_input_to_index() (in module ts-
fresh.utilities.dataframe_functions), 48

roll_time_series() (in module ts-
fresh.utilities.dataframe_functions), 49

S
sample_entropy() (in module ts-

fresh.feature_extraction.feature_calculators),
29

sample_tau() (in module ts-
fresh.examples.driftbif_simulation), 11

select_features() (in module ts-
fresh.feature_selection.selection), 35

set_property() (in module ts-
fresh.feature_extraction.feature_calculators),
29

set_timeseries_container() (ts-
fresh.transformers.feature_augmenter.FeatureAugmenter
method), 41

set_timeseries_container() (ts-
fresh.transformers.relevant_feature_augmenter.RelevantFeatureAugmenter
method), 46

simulate() (tsfresh.examples.driftbif_simulation.velocity
method), 12

skewness() (in module ts-
fresh.feature_extraction.feature_calculators),
29

spkt_welch_density() (in module ts-
fresh.feature_extraction.feature_calculators),
29

standard_deviation() (in module ts-
fresh.feature_extraction.feature_calculators),
29

start_profiling() (in module tsfresh.utilities.profiling), 50
sum_of_reoccurring_data_points() (in module ts-

fresh.feature_extraction.feature_calculators),
30

Index 87

tsfresh Documentation, Release 0.10.0

sum_of_reoccurring_values() (in module ts-
fresh.feature_extraction.feature_calculators),
30

sum_values() (in module ts-
fresh.feature_extraction.feature_calculators),
30

symmetry_looking() (in module ts-
fresh.feature_extraction.feature_calculators),
30

T
target_binary_feature_binary_test() (in module ts-

fresh.feature_selection.significance_tests),
37

target_binary_feature_real_test() (in module ts-
fresh.feature_selection.significance_tests),
38

target_real_feature_binary_test() (in module ts-
fresh.feature_selection.significance_tests),
38

target_real_feature_real_test() (in module ts-
fresh.feature_selection.significance_tests),
38

test_timing() (in module tsfresh.scripts.test_timing), 39
test_with_length() (in module tsfresh.scripts.test_timing),

39
time_reversal_asymmetry_statistic() (in module ts-

fresh.feature_extraction.feature_calculators),
30

transform() (tsfresh.transformers.feature_augmenter.FeatureAugmenter
method), 41

transform() (tsfresh.transformers.feature_selector.FeatureSelector
method), 42

transform() (tsfresh.transformers.per_column_imputer.PerColumnImputer
method), 43

transform() (tsfresh.transformers.relevant_feature_augmenter.RelevantFeatureAugmenter
method), 46

tsfresh (module), 51
tsfresh.convenience (module), 11
tsfresh.convenience.relevant_extraction (module), 9
tsfresh.defaults (module), 51
tsfresh.examples (module), 14
tsfresh.examples.driftbif_simulation (module), 11
tsfresh.examples.har_dataset (module), 12
tsfresh.examples.robot_execution_failures (module), 13
tsfresh.examples.test_tsfresh_baseline_dataset (module),

13
tsfresh.feature_extraction (module), 33
tsfresh.feature_extraction.extraction (module), 14
tsfresh.feature_extraction.feature_calculators (module),

15
tsfresh.feature_extraction.settings (module), 31
tsfresh.feature_selection (module), 38

tsfresh.feature_selection.benjamini_hochberg_test (mod-
ule), 33

tsfresh.feature_selection.relevance (module), 33
tsfresh.feature_selection.selection (module), 35
tsfresh.feature_selection.significance_tests (module), 37
tsfresh.scripts (module), 39
tsfresh.scripts.run_tsfresh (module), 39
tsfresh.scripts.test_timing (module), 39
tsfresh.transformers (module), 46
tsfresh.transformers.feature_augmenter (module), 40
tsfresh.transformers.feature_selector (module), 41
tsfresh.transformers.per_column_imputer (module), 43
tsfresh.transformers.relevant_feature_augmenter (mod-

ule), 44
tsfresh.utilities (module), 51
tsfresh.utilities.dataframe_functions (module), 46
tsfresh.utilities.profiling (module), 49
tsfresh.utilities.string_manipulation (module), 50

V
value_count() (in module ts-

fresh.feature_extraction.feature_calculators),
31

variance() (in module ts-
fresh.feature_extraction.feature_calculators),
31

variance_larger_than_standard_deviation() (in module
tsfresh.feature_extraction.feature_calculators),
31

velocity (class in tsfresh.examples.driftbif_simulation),
11

88 Index

	Contents
	Indices and tables
	Acknowledgements
	Python Module Index

