

    
      
          
            
  
tsfresh

This is the documentation of tsfresh.

tsfresh is a python package that is used to automatically calculate a huge number of time series characteristics, the
so called features.
Further the package contains methods to evaluate the explaining power and importance of such characteristics for
regression or classification tasks.
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Introduction


Why do you need such a module?

tsfresh is used to to extract characteristics from time series. Let’s assume you recorded the ambient temperature around
your computer over one day as the following time series:

[image: the time series]
Now you want to calculate different characteristics such as the maximal or minimal temperature, the average temperature
or the number of temporary temperature peaks:

[image: some characteristics of the time series]
Without tsfresh, you would have to calculate all those characteristics by hand. With tsfresh this process is automated
and all those features can be calculated automatically.

Further tsfresh is compatible with pythons pandas [http://pandas.pydata.org/pandas-docs/stable/index.html#module-pandas] and scikit-learn APIs, two important packages for Data Science endeavours
in python.




What to do with these features?

The extracted features can be used to describe or cluster time series based on the extracted characteristics.
Further, they can be used to build models that perform classification/regression tasks on the time series.
Often the features give new insights into time series and their dynamics.

The tsfresh package has been used successfully in projects involving



	the prediction of the life span of machines

	the prediction of the quality of steel billets during a continuous casting process









What not to do with tsfresh?

Currently, tsfresh is not suitable



	for usage with streaming data

	for batch processing over a distributed architecture, where different time series are fragmented over different
computational units

	to train models on the features (we do not want to reinvent the wheel, check out the python package scikit-learn [http://scikit-learn.org/stable/] for example)






However, some of these use cases could be implemented, if you have an application in mind, open
an issue at https://github.com/blue-yonder/tsfresh/issues, or feel free to contact us.




What else is out there?

There is a matlab package called hctsa [https://github.com/benfulcher/hctsa] which can be used to automatically
extract features from time series.
It is also possible to use hctsa from within python by means of the pyopy [https://github.com/strawlab/pyopy] package.







          

      

      

    

  

    
      
          
            
  
Quick Start


Install tsfresh

As the compiled tsfresh package is hosted on pypy you can easily install it with pip

pip install tsfresh








Dive in

Before boring yourself by reading the docs in detail, you can dive right into tsfresh with the following example:

We are given a data set containing robot failures as discussed in [1].
Each robot records time series from six different sensors.
For each sample denoted by a different id we are going to classify if the robot reports a failure or not.
From a machine learning point of view, our goal is to classify each group of time series.

To start, we load the data into python

from tsfresh.examples.robot_execution_failures import download_robot_execution_failures, \
    load_robot_execution_failures
download_robot_execution_failures()
timeseries, y = load_robot_execution_failures()





and end up with a pandas.DataFrame timeseries having the following shape














	 
	id
	time
	a
	b
	c
	d
	e
	f




	0
	1
	0
	-1
	-1
	63
	-3
	-1
	0


	1
	1
	1
	0
	0
	62
	-3
	-1
	0


	2
	1
	2
	-1
	-1
	61
	-3
	0
	0


	3
	1
	3
	-1
	-1
	63
	-2
	-1
	0


	4
	1
	4
	-1
	-1
	63
	-3
	-1
	0


	...
	...
	...
	...
	...
	...
	...
	...
	...





The first column is the DataFrame index and has no meaning here.
There are six different time series (a-f) for the different sensors. The different robots are denoted by the ids column.

On the other hand, y contains the information which robot id reported a failure and which not:







	1
	0


	2
	0


	3
	0


	4
	0


	5
	0


	...
	...





Here, for the samples with ids 1 to 5 no failure was reported.

In the following we illustrate the time series of the sample id 3 reporting no failure:

[image: the time series for id 3 (no failure)]
And for id 20 reporting a failure:

[image: the time series for id 20 (failure)]
You can already see some differences by eye - but for successful machines we have to put these differences into numbers.

For this, tsfresh comes into place.
It allows us to automatically extract over 1200 features from those six different time series for each robot.

For extracting all features, we do:

from tsfresh import extract_features
extracted_features = extract_features(timeseries, column_id="id", column_sort="time")





You end up with a dataframe extracted_features with all more than 1200 different extracted features.
We will now remove all NaN values and select only the relevant features next

from tsfresh import select_features
from tsfresh.utilities.dataframe_functions import impute

impute(extracted_features)
features_filtered = select_features(extracted_features, y)





Only around 300 features were classified as relevant enough.

Further, you can even perform the extraction, imputing and filtering at the same time with the
tsfresh.extract_relevant_features() function:

from tsfresh import extract_relevant_features

features_filtered_direct = extract_relevant_features(timeseries, y, column_id='id', column_sort='time')





You can now use the features contained in the Data Frame features_filtered (which is equal to
features_filtered_direct) in conjunction with y to train your model. Please see the robot_failure_example.ipynb
Jupyter Notebook in the folder named notebook. In this notebook a RandomForestClassifier is trained on the extracted
features.

References




	[1]	http://archive.ics.uci.edu/ml/datasets/Robot+Execution+Failures
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Module contents

At the top level we export the three most important submodules of tsfresh, which are:



	extract_features

	select_features

	extract_relevant_features












          

      

      

    

  

    
      
          
            
  
tsfresh.convenience package


Submodules




tsfresh.convenience.relevant_extraction module


	
tsfresh.convenience.relevant_extraction.extract_relevant_features(timeseries_container, y, X=None, feature_extraction_settings=None, feature_selection_settings=None, column_id=None, column_sort=None, column_kind=None, column_value=None)

	High level convenience function to extract time series features from timeseries_container. Then return feature
matrix X possibly augmented with relevent features with respect to target vector y.

For more details see the documentation of extract_features() and
select_features().

Examples

>>> from tsfresh.examples import load_robot_execution_failures
>>> from tsfresh import extract_relevant_features
>>> df, y = load_robot_execution_failures()
>>> X = extract_relevant_features(df, y, column_id='id', column_sort='time')









	Parameters:	
	timeseries_container – See parameter timeseries_container in extract_features()

	y – See parameter y in select_features()

	X – See parameter X in select_features()

	column_id – See parameter column_id in extract_features()

	column_sort – See parameter column_sort in extract_features()

	column_kind – See parameter column_kind in extract_features()

	column_value – See parameter column_value in extract_features()

	feature_extraction_settings – See parameter feature_extraction_settings in extract_features()

	feature_selection_settings – See parameter feature_selection_settings in select_features()






	Returns:	Feature matrix X, possibly extended with relevant time series features.














Module contents

The convenience submodule contains methods that allow the user to extract and filter features
conveniently.







          

      

      

    

  

    
      
          
            
  
tsfresh.examples package


Submodules




tsfresh.examples.driftbif_simulation module


	
tsfresh.examples.driftbif_simulation.load_driftbif(n, l, m=2, classification=True, kappa_3=0.3, seed=False)

	Simulates n time-series with l time steps each for the m-dimensional velocity of a dissipative soliton

classification=True:
target 0 means tau<=1/0.3, Dissipative Soliton with Brownian motion (purely noise driven)
target 1 means tau> 1/0.3, Dissipative Soliton with Active Brownian motion (intrinsiv velocity with overlaid noise)

classification=False:
target is bifurcation parameter tau





	Parameters:	
	n (int [https://docs.python.org/2.7/library/functions.html#int]) – number of samples

	l (int [https://docs.python.org/2.7/library/functions.html#int]) – length of the time series

	m (int [https://docs.python.org/2.7/library/functions.html#int]) – number of spatial dimensions (default m=2) the dissipative soliton is propagating in

	classification (bool [https://docs.python.org/2.7/library/functions.html#bool]) – distinguish between classification (default True) and regression target

	kappa_3 (float [https://docs.python.org/2.7/library/functions.html#float]) – inverse bifurcation parameter (default 0.3)

	seed (float [https://docs.python.org/2.7/library/functions.html#float]) – random seed (default False)






	Returns:	X, y. Time series container and target vector




	Rtype X:	pandas.DataFrame




	Rtype y:	pandas.DataFrame












	
tsfresh.examples.driftbif_simulation.sample_tau(n=10, kappa_3=0.3, ratio=0.5, rel_increase=0.15)

	Return list of control parameters





	Parameters:	
	n (int [https://docs.python.org/2.7/library/functions.html#int]) – number of samples

	kappa_3 (float [https://docs.python.org/2.7/library/functions.html#float]) – inverse bifurcation point

	ratio (float [https://docs.python.org/2.7/library/functions.html#float]) – ratio (default 0.5) of samples before and beyond drift-bifurcation

	rel_increase (float [https://docs.python.org/2.7/library/functions.html#float]) – relative increase from bifurcation point






	Returns:	tau. List of sampled bifurcation parameter




	Rtype tau:	list












	
class tsfresh.examples.driftbif_simulation.velocity(tau=3.8, kappa_3=0.3, Q=1950.0, R=0.0003, delta_t=0.05, seed=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Simulates the velocity of a dissipative soliton (kind of self organized particle).
The equilibrium velocity without noise R=0 for $    au>1.0/kappa_3$ is $kappa_3 sqrt{(tau - 1.0/kappa_3)/Q}. Before the drift-bifurcation $     au le 1.0/kappa_3$ the velocity is zero.

References




	[6]	Andreas Kempa-Liehr (2013, p. 159-170)
Dynamics of Dissipative Soliton
Dissipative Solitons in Reaction Diffusion Systems.
Springer: Berlin




>>> ds = velocity(tau=3.5) # Dissipative soliton with equilibrium velocity 1.5e-3
>>> print(ds.label) # Discriminating before or beyond Drift-Bifurcation
1
>>> print(ds.deterministic) # Equilibrium velocity
0.0015191090506254991
>>> v = ds.simulate(20000) #Simulated velocity as a time series with 20000 time steps being disturbed by Gaussian white noise






	
simulate(N, v0=array([ 0., 0.]))

	



	Parameters:	
	N (int [https://docs.python.org/2.7/library/functions.html#int]) – number of time steps

	v0 (ndarray) – initial velocity vector






	Returns:	time series of velocity vectors with shape (N, v0.shape[0])




	Return type:	ndarray


















tsfresh.examples.har_dataset module

This module implements functions to download and load the Human Activity Recognition dataset [4].
A description of the data set can be found in [5].

References




	[4]	http://mlr.cs.umass.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones







	[5]	Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. (2013)
A Public Domain Dataset for Human Activity Recognition Using Smartphones.
21th European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.





	
tsfresh.examples.har_dataset.download_har_dataset()

	Download human activity recognition dataset from UCI ML Repository and store it at /tsfresh/notebooks/data.

Examples

>>> from tsfresh.examples import har_dataset
>>> download_har_dataset()










	
tsfresh.examples.har_dataset.load_har_classes()

	




	
tsfresh.examples.har_dataset.load_har_dataset()

	






tsfresh.examples.robot_execution_failures module

This module implements functions to download the Robot Execution Failures LP1 Data Set[1] and load it as as DataFrame.

Important: You need to download the data set yourself, either manually or via the function
download_robot_execution_failures()

References




	[1]	http://mlr.cs.umass.edu/ml/datasets/Robot+Execution+Failures







	[2]	Lichman, M. (2013).
UCI Machine Learning Repository [http://mlr.cs.umass.edu/ml].
Irvine, CA: University of California, School of Information and Computer Science.







	[3]	Camarinha-Matos, L.M., L. Seabra Lopes, and J. Barata (1996).
Integration and Learning in Supervision of Flexible Assembly Systems.
“IEEE Transactions on Robotics and Automation”, 12 (2), 202-219





	
tsfresh.examples.robot_execution_failures.download_robot_execution_failures()

	Download the Robot Execution Failures LP1 Data Set[1] from the UCI Machine Learning Repository[2] and store it locally.
:return:

Examples

>>> from tsfresh.examples import download_robot_execution_failures
>>> download_robot_execution_failures_lp1()










	
tsfresh.examples.robot_execution_failures.load_robot_execution_failures()

	Load the Robot Execution Failures LP1 Data Set[1].
The Time series are passed as a flat DataFrame.

Examples

>>> from tsfresh.examples import load_robot_execution_failures
>>> df, y = load_robot_execution_failures()
>>> print(df.shape)
(1320, 8)









	Returns:	time series data as pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] and target vector as pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]


	Return type:	tuple [https://docs.python.org/2.7/library/functions.html#tuple]












tsfresh.examples.test_tsfresh_baseline_dataset module

This module implements a function to download a json timeseries data set that is
utilised by tests/baseline/tsfresh_features_test.py to test calculated feature
names and their calculated values are consistent with the known baseline.


	
tsfresh.examples.test_tsfresh_baseline_dataset.download_json_dataset()

	Download the tests baseline timeseries json data set and store it at
tsfresh/examples/data/test_tsfresh_baseline_dataset/data.json.

Examples

>>> from tsfresh.examples import test_tsfresh_baseline_dataset
>>> download_json_dataset()












Module contents

Module with exemplary data sets to play around with.

See for eample the Quick Start section on how to use them.







          

      

      

    

  

    
      
          
            
  
tsfresh.feature_extraction package


Submodules




tsfresh.feature_extraction.extraction module

This module contains the main function to interact with tsfresh: extract features


	
tsfresh.feature_extraction.extraction.extract_features(timeseries_container, feature_extraction_settings=None, column_id=None, column_sort=None, column_kind=None, column_value=None, parallelization=None)

	Extract features from


	a pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] containing the different time series



or


	a dictionary of pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] each containing one type of time series



In both cases a pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] with the calculated features will be returned.

For a list of all the calculated time series features, please see the
FeatureExtractionSettings class,
which is used to control which features with which parameters are calculated.

For a detailed explanation of the different parameters and data formats please see Data Formats.

Examples

>>> from tsfresh.examples import load_robot_execution_failures
>>> from tsfresh import extract_features
>>> df, _ = load_robot_execution_failures()
>>> X = extract_features(df, column_id='id', column_sort='time')





which would give the same results as described above. In this case, the column_kind is not allowed.
Except that, the same rules for leaving out the columns apply as above.





	Parameters:	
	timeseries_container (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – The pandas.DataFrame with the time series to compute the features for, or a
dictionary of pandas.DataFrames.

	feature_extraction_settings (tsfresh.feature_extraction.settings.FeatureExtractionSettings) – settings object that controls which features are calculated

	column_id (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the id column to group by.

	column_sort (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the sort column.

	column_kind (str [https://docs.python.org/2.7/library/functions.html#str]) – The name of the column keeping record on the kind of the value.

	column_value (str [https://docs.python.org/2.7/library/functions.html#str]) – The name for the column keeping the value itself.

	parallelization (str [https://docs.python.org/2.7/library/functions.html#str]) – Either 'per_sample' or 'per_kind'   , see
_extract_features_parallel_per_sample(),
_extract_features_parallel_per_kind() and
Parallelization for details.






	Returns:	The (maybe imputed) DataFrame containing extracted features.




	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]














tsfresh.feature_extraction.feature_calculators module

This module contains the feature calculators that take time series as input and calculate the values of the feature.
There are three types of features:


	aggregate features without parameter

	aggregate features with parameter

	apply features with parameters



While type 1 and 2 are designed to be used with pandas aggregate, they will only return one singular feature.
To not unnecessarily redo auxiliary calculations, in type 3 a group of features is calculated at the same time. They
can be used with pandas apply.


	
tsfresh.feature_extraction.feature_calculators.abs_energy(x, *arg, **args)

	Returns the absolute energy of the time series which is the sum over the squared values


[image: E = \sum_{i=1,\ldots, n} x_i^2]






	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.absolute_sum_of_changes(x, *arg, **args)

	Returns the sum over the absolute value of consecutive changes in the series x


[image: \sum_{i=1, \ldots, n-1} \mid x_{i+1}- x_i \mid]






	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.approximate_entropy(x, m, r)

	Implements a vectorized Approximate entropy algorithm.


https://en.wikipedia.org/wiki/Approximate_entropy


For short time-series this method is highly dependent on the parameters,
but should be stable for N > 2000, see:


Yentes et al. (2012) -
The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets


Other shortcomings and alternatives discussed in:


Richman & Moorman (2000) -
Physiological time-series analysis using approximate entropy and sample entropy






	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	m (int [https://docs.python.org/2.7/library/functions.html#int]) – Length of compared run of data

	r (float [https://docs.python.org/2.7/library/functions.html#float]) – Filtering level, must be positive






	Returns:	Approximate entropy




	Return type:	float







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.ar_coefficient(x, *arg, **args)

	This feature calculator fits the unconditional maximum likelihood
of an autoregressive AR(k) process.
The k parameter is the maximum lag of the process


[image: X_{t}=\varphi_0 +\sum _{{i=1}}^{k}\varphi_{i}X_{{t-i}}+\varepsilon_{t}]


For the configurations from param which should contain the maxlag “k” and such an AR process is calculated. Then
the coefficients [image: \varphi_{i}] whose index [image: i] contained from “coeff” are returned.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	c (str [https://docs.python.org/2.7/library/functions.html#str]) – the time series name

	param (list [https://docs.python.org/2.7/library/functions.html#list]) – contains dictionaries {“coeff”: x, “k”: y} with x,y int






	Return x:	the different feature values




	Return type:	pandas.Series







This function is of type: apply






	
tsfresh.feature_extraction.feature_calculators.augmented_dickey_fuller(x, *arg, **args)

	The Augmented Dickey-Fuller test is a hypothesis test which checks whether a unit root is present in a time
series sample. This feature calculator returns the value of the respective test statistic.

See the statsmodels implementation for references and more details.





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.autocorrelation(x, *arg, **args)

	Calculates the lag autocorrelation of a lag value of lag.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	lag (int [https://docs.python.org/2.7/library/functions.html#int]) – the lag






	Returns:	the value of this feature




	Return type:	float







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.binned_entropy(x, *arg, **args)

	First bins the values of x into max_bins equidistant bins.
Then calculates the value of


[image: - \sum_{k=0}^{min(max\_bins, len(x))} p_k log(p_k) \cdot \mathbf{1}_{(p_k > 0)}]


where [image: p_k] is the percentage of samples in bin [image: k].





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	max_bins (int [https://docs.python.org/2.7/library/functions.html#int]) – the maximal number of bins






	Returns:	the value of this feature




	Return type:	float







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.count_above_mean(x, *arg, **args)

	Returns the number of values in x that are higher than the mean of x





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.count_below_mean(x, *arg, **args)

	Returns the number of values in x that are lower than the mean of x





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.cwt_coefficients(x, *arg, **args)

	Calculates a Continuous wavelet transform for the Ricker wavelet, also known as the “Mexican hat wavelet” which is
defined by


[image: \frac{2}{\sqrt{3a} \pi^{\frac{1}{4}}} (1 - \frac{x^2}{a^2}) exp(-\frac{x^2}{2a^2})]


where [image: a] is the width parameter of the wavelet function.

This feature calculator takes three different parameter: widths, coeff and w. The feature calculater takes all the
different widths arrays and then calculates the cwt one time for each different width array. Then the values for the
different coefficient for coeff and width w are returned. (For each dic in param one feature is returned)





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	c (str [https://docs.python.org/2.7/library/functions.html#str]) – the time series name

	param (list [https://docs.python.org/2.7/library/functions.html#list]) – contains dictionaries {“widths”:x, “coeff”: y, “w”: z} with x array of int and y,z int






	Returns:	the different feature values




	Return type:	pandas.Series







This function is of type: apply






	
tsfresh.feature_extraction.feature_calculators.fft_coefficient(x, *arg, **args)

	Calculates the fourier coefficients of the one-dimensional discrete Fourier Transform for real input by fast
fourier transformation algorithm





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	c (str [https://docs.python.org/2.7/library/functions.html#str]) – the time series name

	param (list [https://docs.python.org/2.7/library/functions.html#list]) – contains dictionaries {“coeff”: x} with x int and x >= 0






	Returns:	the different feature values




	Return type:	pandas.Series







This function is of type: apply






	
tsfresh.feature_extraction.feature_calculators.first_location_of_maximum(x, *arg, **args)

	Returns the first location of the maximum value of x.
The position is calculated relatively to the length of x.





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.first_location_of_minimum(x, *arg, **args)

	Returns the first location of the minimal value of x.
The position is calculated relatively to the length of x.





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.friedrich_coefficients(x, c, param)

	Coefficients of polynomial [image: h(x)], which has been fitted to
the deterministic dynamics of Langevin model
.. math:


System Message: ERROR/3 (/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/envs/v0.7.0/local/lib/python2.7/site-packages/tsfresh/feature_extraction/feature_calculators.py:docstring of tsfresh.feature_extraction.feature_calculators.friedrich_coefficients, line 4)

Unexpected indentation.

\dot{x}(t) = h(x(t)) + \mathcal{N}(0,R)





as described by


Friedrich et al. (2000): Physics Letters A 271, p. 217-222
Extracting model equations from experimental data


For short time-series this method is highly dependent on the parameters.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	c (str [https://docs.python.org/2.7/library/functions.html#str]) – the time series name

	param (list [https://docs.python.org/2.7/library/functions.html#list]) – contains dictionaries {“coeff”: x} with x int and x >= 0






	Returns:	the different feature values




	Return type:	pandas.Series







This function is of type: apply






	
tsfresh.feature_extraction.feature_calculators.has_duplicate(x, *arg, **args)

	Checks if any value in x occurs more than once





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	bool





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.has_duplicate_max(x, *arg, **args)

	Checks if the maximum value of x is observed more than once





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	bool





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.has_duplicate_min(x, *arg, **args)

	Checks if the minimal value of x is observed more than once





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	bool





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.index_mass_quantile(x, *arg, **args)

	Those apply features calculate the relative index i where q% of the mass of the time series x lie left of i.
For example for q = 50% this feature calculator will return the mass center of the time series





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	c (str [https://docs.python.org/2.7/library/functions.html#str]) – the time series name

	param (list [https://docs.python.org/2.7/library/functions.html#list]) – contains dictionaries {“q”: x} with x float






	Returns:	the different feature values




	Return type:	pandas.Series







This function is of type: apply






	
tsfresh.feature_extraction.feature_calculators.kurtosis(x, *arg, **args)

	Returns the kurtosis of x (calculated with the adjusted Fisher-Pearson standardized
moment coefficient G2).





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.large_number_of_peaks(x, *arg, **args)

	Checks if the number of peaks is higher than n.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	n (int [https://docs.python.org/2.7/library/functions.html#int]) – the number of peaks to compare






	Returns:	the value of this feature




	Return type:	bool







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.large_standard_deviation(x, *arg, **args)

	Boolean variable denoting if the standard dev of x is higher
than ‘r’ times the range = difference between max and min of x.
Hence it checks if


[image: std(x) > r * (max(X)-min(X))]


According to a rule of the thumb, the standard deviation should be a forth of the range of the values.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	r (float [https://docs.python.org/2.7/library/functions.html#float]) – the percentage of the range to compare with






	Returns:	the value of this feature




	Return type:	bool







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.last_location_of_maximum(x, *arg, **args)

	Returns the relative last location of the maximum value of x.
The position is calculated relatively to the length of x.





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.last_location_of_minimum(x, *arg, **args)

	Returns the last location of the minimal value of x.
The position is calculated relatively to the length of x.





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.length(x, *arg, **args)

	Returns the length of x





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	int





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.longest_strike_above_mean(x, *arg, **args)

	Returns the length of the longest consecutive subsequence in x that is bigger than the mean of x





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.longest_strike_below_mean(x, *arg, **args)

	Returns the length of the longest consecutive subsequence in x that is smaller than the mean of x





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.max_langevin_fixed_point(x, r, m)

	Largest fixed point of dynamics  :math:argmax_x {h(x)=0}` estimated from polynomial [image: h(x)],
which has been fitted to the deterministic dynamics of Langevin model
.. math:


System Message: ERROR/3 (/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/envs/v0.7.0/local/lib/python2.7/site-packages/tsfresh/feature_extraction/feature_calculators.py:docstring of tsfresh.feature_extraction.feature_calculators.max_langevin_fixed_point, line 4)

Unexpected indentation.

\dot(x)(t) = h(x(t)) + R \mathcal(N)(0,1)





as described by


Friedrich et al. (2000): Physics Letters A 271, p. 217-222
Extracting model equations from experimental data


For short time-series this method is highly dependent on the parameters.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	m (int [https://docs.python.org/2.7/library/functions.html#int]) – order of polynom to fit for estimating fixed points of dynamics

	r (float [https://docs.python.org/2.7/library/functions.html#float]) – number of quantils to use for averaging






	Returns:	Largest fixed point of deterministic dynamics




	Return type:	float







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.maximum(x)

	Calculates the highest value of the time series x.





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.mean(x)

	Returns the mean of x





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.mean_abs_change(x, *arg, **args)

	Returns the mean over the absolute differences between subsequent time series values which is


[image: \frac{1}{n} \sum_{i=1,\ldots, n-1} | x_{i+1} - x_{i}|]






	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.mean_abs_change_quantiles(x, *arg, **args)

	First fixes a corridor given by the quantiles ql and qh of the distribution of x. Then calculates the average
absolute value of consecutive changes of the series x inside this corridor. Think about selecting a corridor on the
y-Axis and only calculating the mean of the absolute change of the time series inside this corridor.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	ql (float [https://docs.python.org/2.7/library/functions.html#float]) – the lower quantile of the corridor

	qh (float [https://docs.python.org/2.7/library/functions.html#float]) – the higher quantile of the corridor






	Returns:	the value of this feature




	Return type:	float







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.mean_autocorrelation(x, *arg, **args)

	Calculates the average autocorrelation (Compare to http://en.wikipedia.org/wiki/Autocorrelation#Estimation),
taken over different all possible lags (1 to length of x)


[image: \frac{1}{n} \sum_{l=1,\ldots, n} \frac{1}{(n-l)\sigma^{2}} \sum_{t=1}^{n-l}(X_{t}-\mu )(X_{t+l}-\mu)]


where [image: n] is the length of the time series [image: X_i], [image: \sigma^2] its variance and [image: \mu] its
mean.





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.mean_change(x, *arg, **args)

	Returns the mean over the absolute differences between subsequent time series values which is


[image: \frac{1}{n} \sum_{i=1,\ldots, n-1}  x_{i+1} - x_{i}]






	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.mean_second_derivate_central(x, *arg, **args)

	Returns the mean value of a central approximation of the second derivative


[image: \frac{1}{n} \sum_{i=1,\ldots, n-1}  \frac{1}{2} (x_{i+2} - 2 \cdot x_{i+1} + x_i)]






	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.median(x)

	Returns the median of x





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.minimum(x)

	Calculates the lowest value of the time series x.





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.not_apply_to_raw_numbers(func)

	This decorator makes sure that the function func is only called on objects that are not numbers.Number





	Parameters:	func – the method that should only be executed on objects which are not a numbers.Number


	Returns:	the decorated version of func which returns 0 if the first argument x is a numbers.Number. For every
other x the output of func is returned










	
tsfresh.feature_extraction.feature_calculators.number_cwt_peaks(x, *arg, **args)

	This feature calculator searches for different peaks in x. To do so, x is smoothed by a ricker wavelet and for
widths ranging from 1 to n. This feature calculator returns the number of peaks that occur at enough width scales
and with sufficiently high Signal-to-Noise-Ratio (SNR)





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	n (int [https://docs.python.org/2.7/library/functions.html#int]) – maximum width to consider






	Returns:	the value of this feature




	Return type:	int







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.number_peaks(x, *arg, **args)

	Calculates the number of peaks of at least support n in the time series x. A peak of support n is defined as a
subsequence of x where a value occurs, which is bigger than its n neighbours to the left and to the right.

Hence in the sequence

>>> x = [3, 0, 0, 4, 0, 0, 13]





4 is a peak of support 1 and 2 because in the subsequences

>>> [0, 4, 0]
>>> [0, 0, 4, 0, 0]





4 is still the highest value. Here, 4 is not a peak of support 3 because 13 is the 3th neighbour to the right of 4
and its bigger than 4.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	n (int [https://docs.python.org/2.7/library/functions.html#int]) – the support of the peak






	Returns:	the value of this feature




	Return type:	float







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.percentage_of_reoccurring_datapoints_to_all_datapoints(x, *arg, **args)

	Returns the percentage of unique values, that are present in the time series
more than once.


len(different values occurring more than once) / len(different values)


This means the percentage is normalized to the number of unique values,
in contrast to the percentage_of_reoccurring_values_to_all_values.





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.percentage_of_reoccurring_values_to_all_values(x, *arg, **args)

	Returns the ratio of unique values, that are present in the time series
more than once.


# of data points occurring more than once / # of all data points


This means the ratio is normalized to the number of data points in the time series,
in contrast to the percentage_of_reoccurring_datapoints_to_all_datapoints.





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.quantile(x, *arg, **args)

	Calculates the q quantile of x. This is the value of x greater than q% of the ordered values from x.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	q (float [https://docs.python.org/2.7/library/functions.html#float]) – the quantile to calculate






	Returns:	the value of this feature




	Return type:	float







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.range_count(x, min, max)

	Count observed values within the interval [min, max).





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	min (int [https://docs.python.org/2.7/library/functions.html#int] or float [https://docs.python.org/2.7/library/functions.html#float]) – the inclusive lower bound of the range

	max (int [https://docs.python.org/2.7/library/functions.html#int] or float [https://docs.python.org/2.7/library/functions.html#float]) – the exclusive upper bound of the range






	Returns:	the count of values within the range




	Return type:	int [https://docs.python.org/2.7/library/functions.html#int]







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.ratio_value_number_to_time_series_length(x, *arg, **args)

	Returns a factor which is 1 if all values in the time series occur only once,
and below one if this is not the case.
In principle, it just returns


# unique values / # values






	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.sample_entropy(x)

	Calculate and return sample entropy of x.
References:
———-
[1] http://en.wikipedia.org/wiki/Sample_Entropy
[2] https://www.ncbi.nlm.nih.gov/pubmed/10843903?dopt=Abstract





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	tolerance (float [https://docs.python.org/2.7/library/functions.html#float]) – normalization factor; equivalent to the common practice of expressing the tolerance as r times the standard deviation






	Returns:	the value of this feature




	Return type:	float







This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.set_property(key, value)

	This method returns a decorator that sets the property key of the function to value






	
tsfresh.feature_extraction.feature_calculators.skewness(x, *arg, **args)

	Returns the sample skewness of x (calculated with the adjusted Fisher-Pearson standardized
moment coefficient G1).





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.spkt_welch_density(x, *arg, **args)

	This feature calculator estimates the cross power spectral density of the time series x at different frequencies.
To do so, the time series is first shifted from the time domain to the frequency domain.

The feature calculators returns the power spectrum of the different frequencies.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	c (str [https://docs.python.org/2.7/library/functions.html#str]) – the time series name

	param (list [https://docs.python.org/2.7/library/functions.html#list]) – contains dictionaries {“coeff”: x} with x int






	Returns:	the different feature values




	Return type:	pandas.Series







This function is of type: apply






	
tsfresh.feature_extraction.feature_calculators.standard_deviation(x, *arg, **args)

	Returns the standard deviation of x





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.sum_of_reoccurring_data_points(x, *arg, **args)

	Returns the sum of all data points, that are present in the time series
more than once.





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.sum_of_reoccurring_values(x, *arg, **args)

	Returns the sum of all values, that are present in the time series
more than once.





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.sum_values(x)

	Calculates the sum over the time series values





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	bool





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.symmetry_looking(x, *arg, **args)

	Boolean variable denoting if the distribution of x looks symmetric. This is the case if


[image: | mean(X)-median(X)| < r * (max(X)-min(X))]






	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	r (float [https://docs.python.org/2.7/library/functions.html#float]) – the percentage of the range to compare with






	Returns:	the value of this feature




	Return type:	bool







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.time_reversal_asymmetry_statistic(x, *arg, **args)

	This function calculates the value of


[image: \frac{1}{n-2lag} \sum_{i=0}^{n-2lag} x_{i + 2 \cdot lag}^2 \cdot x_{i + lag} - x_{i + lag} \cdot  x_{i}^2]


which is


[image: \mathbb{E}[L^2(X)^2 \cdot L(X) - L(X) \cdot X^2]]


where [image: \mathbb{E}] is the mean and [image: L] is the lag operator. It was proposed in [1] as a
promising feature to extract from time series.

References




	[1]	Fulcher, B.D., Jones, N.S. (2014).
Highly comparative feature-based time-series classification.
Knowledge and Data Engineering, IEEE Transactions on 26, 3026–3037.








	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	lag (int [https://docs.python.org/2.7/library/functions.html#int]) – the lag that should be used in the calculation of the feature






	Returns:	the value of this feature




	Return type:	float







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.value_count(x, value)

	Count occurrences of value in time series x.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of

	value (int [https://docs.python.org/2.7/library/functions.html#int] or float [https://docs.python.org/2.7/library/functions.html#float]) – the value to be counted






	Returns:	the count




	Return type:	int [https://docs.python.org/2.7/library/functions.html#int]







This function is of type: aggregate_with_parameters






	
tsfresh.feature_extraction.feature_calculators.variance(x, *arg, **args)

	Returns the variance of x





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	float





This function is of type: aggregate






	
tsfresh.feature_extraction.feature_calculators.variance_larger_than_standard_deviation(x, *arg, **args)

	Boolean variable denoting if the variance of x is greater than its standard deviation. Is equal to variance of x
being larger than 1





	Parameters:	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the time series to calculate the feature of


	Returns:	the value of this feature


	Return type:	bool





This function is of type: aggregate








tsfresh.feature_extraction.settings module

This file contains all settings of the tsfresh.
For the naming of the features, see Feature Calculation.


	
class tsfresh.feature_extraction.settings.FeatureExtractionSettings(calculate_all_features=True)

	Bases: future.types.newobject.newobject

This class defines the behaviour of feature extraction, in particular which feature and parameter combinations are calculated.
If you do not specify any user settings, all features will be extracted with default arguments defined in this class.

In general, we consider three types of time series features:


	aggregate features without parameter that emit exactly one feature per function calculator

	aggregate features with parameter that emit exactly one feature per function calculator

	apply features with parameters that emit several features per function calculator (usually one feature per parameter value)



These three types are stored in different dictionaries. For the feature types with parameters there is also a
dictionary containing the parameters.

It is possible to obtain a FeatureExtractionSettings object from a feature matrix,
see func:~tsfresh.feature_extraction.settings.FeatureExtractionSettings.from_columns. This is useful to reproduce
the features of a train set for a test set.

To set user defined settings, do something like

>>> from tsfresh.feature_extraction import FeatureExtractionSettings
>>> settings = FeatureExtractionSettings()
>>> # Calculate all features except length
>>> settings.do_not_calculate("length")
>>> from tsfresh.feature_extraction import extract_features
>>> extract_features(df, feature_extraction_settings=settings)





Mostly, the settings in this class are for enabling/disabling the extraction of certain features, which can be
important to save time during feature extraction. Additionally, some of the features have parameters which can be
controlled here.

If the calculation of a feature failed (for whatever reason), the results can be NaN. The IMPUTE flag defaults to
None and can be set to one of the impute functions in dataframe_functions.


	
do_not_calculate(kind, identifier)

	Delete all features of type identifier for time series of type kind.





	Parameters:	
	kind (basestring [https://docs.python.org/2.7/library/functions.html#basestring]) – the type of the time series

	identifier (basestring [https://docs.python.org/2.7/library/functions.html#basestring]) – the name of the feature






	Returns:	The setting object itself




	Return type:	FeatureExtractionSettings












	
static from_columns(columns)

	Creates a FeatureExtractionSettings object set to extract only the features contained in the list columns. To
do so, for every feature name in columns, this method will:


	split the column name into col, feature, params part

	decide which feature we are dealing with (aggregate with/without params or apply)

	add it to the new name_to_function dict

	set up the params



Set the feature and params dictionaries in the settings object, then return it.





	Parameters:	columns (list of str) – containing the feature names


	Returns:	The changed settings object


	Return type:	FeatureExtractionSettings










	
get_aggregate_functions(kind)

	For the time series, returns a dictionary with the column name mapped to the feature calculators that are
specified in the FeatureExtractionSettings object. This dictionary can be used in a pandas group by command to
extract all aggregate features at the same time.





	Parameters:	kind (basestring [https://docs.python.org/2.7/library/functions.html#basestring]) – the type of the time series


	Returns:	mapping of column name to function calculator


	Return type:	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]










	
get_apply_functions(column_prefix)

	Convenience function to return a list with all the functions to apply on a data frame and extract features.
Only adds those functions to the dictionary that are enabled in the settings.





	Parameters:	column_prefix (basestring [https://docs.python.org/2.7/library/functions.html#basestring]) – the prefix all column names.


	Returns:	all functions to use for feature extraction


	Return type:	list [https://docs.python.org/2.7/library/functions.html#list]










	
static get_config_from_string(parts)

	Helper function to extract the configuration of a certain function from the column name.
The column name parts (split by “__”) should be passed to this function. It will skip the
kind name and the function name and only use the parameter parts. These parts will be split up on “_”
into the parameter name and the parameter value. This value is transformed into a python object
(for example is “(1, 2, 3)” transformed into a tuple consisting of the ints 1, 2 and 3).





	Parameters:	parts (list [https://docs.python.org/2.7/library/functions.html#list]) – The column name split up on “__”


	Returns:	a dictionary with all parameters, which are encoded in the column name.


	Return type:	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]










	
set_default_parameters(kind)

	Setup the feature calculations for kind as defined in self.name_to_param





	Parameters:	kind – str, the type of the time series


	Returns:	














	
class tsfresh.feature_extraction.settings.MinimalFeatureExtractionSettings

	Bases: tsfresh.feature_extraction.settings.FeatureExtractionSettings

This class is a child class of the FeatureExtractionSettings class
and has the same functionality as its base class. The only difference is,
that most of the feature calculators are disabled and only a small
subset of calculators will be calculated at all.

Use this class for quick tests of your setup before calculating all
features which could take some time depending of your data set size.

You should use this object when calling the extract function, like so:

>>> from tsfresh.feature_extraction import extract_features, MinimalFeatureExtractionSettings
>>> extract_features(df, feature_extraction_settings=MinimalFeatureExtractionSettings())










	
class tsfresh.feature_extraction.settings.ReasonableFeatureExtractionSettings

	Bases: tsfresh.feature_extraction.settings.FeatureExtractionSettings

This class is a child class of the FeatureExtractionSettings class
and has the same functionality as its base class.

The only difference is, that the features with high computational costs are not calculated. Those are denoted by
the attribute “high_comp_cost”

You should use this object when calling the extract function, like so:

>>> from tsfresh.feature_extraction import extract_features, ReasonableFeatureExtractionSettings
>>> extract_features(df, feature_extraction_settings=ReasonableFeatureExtractionSettings())












Module contents

The tsfresh.feature_extraction module contains methods to extract the features from the time series







          

      

      

    

  

    
      
          
            
  
tsfresh.feature_selection package


Submodules




tsfresh.feature_selection.feature_selector module

Contains a feature selection method that evaluates the importance of the different extracted features. To do so,
for every feature the influence on the target is evaluated by an univariate tests and the p-Value is calculated.
The methods that calculate the p-values are called feature selectors.

Afterwards the Benjamini Hochberg procedure which is a multiple testing procedure decides which features to keep and
which to cut off (solely based on the p-values).


	
tsfresh.feature_selection.feature_selector.benjamini_hochberg_test(df_pvalues, settings)

	This is an implementation of the benjamini hochberg procedure that calculates which of the hypotheses belonging
to the different p-Values from df_p to reject. While doing so, this test controls the false discovery rate,
which is the ratio of false rejections by all rejections:


[image: FDR = \mathbb{E} \left [ \frac{ |\text{false rejections}| }{ |\text{all rejections}|} \right]]


References




	[1]	Benjamini, Yoav and Yekutieli, Daniel (2001).
The control of the false discovery rate in multiple testing under dependency.
Annals of statistics, 1165–1188








	Parameters:	
	df_pvalues (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]) – This DataFrame should contain the p_values of the different hypotheses in a column named
“p_values”.

	settings (FeatureSignificanceTestsSettings) – The settings object to use for controlling the false discovery rate (FDR_level) and
whether to treat the hypothesis as independent or not (hypotheses_independent).






	Returns:	The same DataFrame as the input, but with an added boolean column “rejected”.




	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]












	
tsfresh.feature_selection.feature_selector.check_fs_sig_bh(X, y, settings=None)

	The wrapper function that calls the significance test functions in this package.
In total, for each feature from the input pandas.DataFrame a univariate feature significance test is conducted.
Those tests generate p values that are then evaluated by the Benjamini Hochberg procedure to decide which features
to keep and which to delete.

We are testing


[image: H_0] = the Feature is not relevant and cannot be added


against


[image: H_1] = the Feature is relevant and should be kept


or in other words


[image: H_0] = Target and Feature are independent / the Feature has no influence on the target

[image: H_1] = Target and Feature are associated / dependent




When the target is binary this becomes


[image: H_0 = \left( F_{\text{target}=1} = F_{\text{target}=0} \right)]

[image: H_1 = \left( F_{\text{target}=1} \neq F_{\text{target}=0} \right)]




Where [image: F] is the distribution of the target.

In the same way we can state the hypothesis when the feature is binary


[image: H_0 =  \left( T_{\text{feature}=1} = T_{\text{feature}=0} \right)]

[image: H_1 = \left( T_{\text{feature}=1} \neq T_{\text{feature}=0} \right)]




Here [image: T] is the distribution of the target.

TODO: And for real valued?





	Parameters:	
	X (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]) – The DataFrame containing all the features and the target

	y (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – The target vector

	settings (FeatureSignificanceTestsSettings) – The feature selection settings to use to perform the tests.






	Returns:	A pandas.DataFrame with each column of the input DataFrame X as index with information on the significance
of this particular feature. The DataFrame has the columns
“Feature”,
“type” (binary, real or const),
“p_value” (the significance of this feature as a p-value, lower means more significant)
“rejected” (if the Benjamini Hochberg procedure rejected this feature)




	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]














tsfresh.feature_selection.selection module

This module contains the filtering process for the extracted features. The filtering procedure can also be used on
other features that are not based on time series.


	
tsfresh.feature_selection.selection.select_features(X, y, feature_selection_settings=None)

	Check the significance of all features (columns) of feature matrix X and return a possibly reduced feature matrix
only containing relevant features.

The feature matrix must be a pandas.DataFrame in the format:











	index
	feature_1
	feature_2
	...
	feature_N




	A
	...
	...
	...
	...


	B
	...
	...
	...
	...


	...
	...
	...
	...
	...


	...
	...
	...
	...
	...


	...
	...
	...
	...
	...








Each column will be handled as a feature and tested for its significance to the target.

The target vector must be a pandas.Series or numpy.array in the form








	index
	target




	A
	...


	B
	...


	.
	...


	.
	...








and must contain all id’s that are in the feature matrix. If y is a numpy.array without index, it is assumed
that y has the same order and length than X and the rows correspond to each other.

Examples

>>> from tsfresh.examples import load_robot_execution_failures
>>> from tsfresh import extract_features, select_features
>>> df, y = load_robot_execution_failures()
>>> X_extracted = extract_features(df, column_id='id', column_sort='time')
>>> X_selected = select_features(X_extracted, y)









	Parameters:	
	X (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]) – Feature matrix in the format mentioned before which will be reduced to only the relevant features.
It can contain both binary or real-valued features at the same time.

	y (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] or numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – Target vector which is needed to test which features are relevant. Can be binary or real-valued.

	feature_selection_settings (FeatureSignificanceTestsSettings) – The settings to control the feature selection algorithms. See
py for more information. If none is passed, the defaults
will be used.






	Returns:	The same DataFrame as X, but possibly with reduced number of columns ( = features).




	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]




	Raises:	ValueError when the target vector does not fit to the feature matrix.














tsfresh.feature_selection.settings module


	
class tsfresh.feature_selection.settings.FeatureSignificanceTestsSettings

	Bases: future.types.newobject.newobject

The settings object for controlling the feature significance tests.
Normally, you do not have to handle these settings on your own, as the chosen defaults are quite sensible.

This object is passed to most functions in the feature_selection submodules.

If you want non-default settings, create a new settings object and pass it to the functions, for example if you
want a less conservative selection of features you could increase the fdr level to 10%.

>>> from tsfresh.feature_selection import FeatureSignificanceTestsSettings
>>> settings = FeatureSignificanceTestsSettings()
>>> settings.fdr_level = 0.1
>>> from tsfresh.feature_selection import select_features
>>> select_features(X, y, feature_selection_settings=settings)





This selection process will return more features as the fdr level was raised.


	
fdr_level = None

	The FDR level that should be respected, this is the theoretical expected percentage of irrelevant features
among all created features. E.g.






	
hypotheses_independent = None

	Can the significance of the features be assumed to be independent?
Normally, this should be set to False as the features are never independent (think about mean and median)






	
n_processes = None

	Number of processes to use during the p-value calculation






	
result_dir = None

	Where to store the selection import






	
test_for_binary_target_binary_feature = None

	Which test to be used for binary target, binary feature (unused)






	
test_for_binary_target_real_feature = None

	Which test to be used for binary target, real feature






	
test_for_real_target_binary_feature = None

	Which test to be used for real target, binary feature (unused)






	
test_for_real_target_real_feature = None

	Which test to be used for real target, real feature (unused)






	
write_selection_report = None

	Whether to store the selection report after the Benjamini Hochberg procedure has finished.












tsfresh.feature_selection.significance_tests module

Contains the methods from the following paper about FRESH [2]

Fresh is based on hypothesis tests that individually check the significance of every generated feature on the target.
It makes sure that only features are kept, that are relevant for the regression or classification task at hand. FRESH
decide between four settings depending if the features and target are binary or not.

The four functions are named


	target_binary_feature_binary_test(): Target and feature are both binary

	target_binary_feature_real_test(): Target is binary and feature real

	target_real_feature_binary_test(): Target is real and the feature is binary

	target_real_feature_real_test(): Target and feature are both real



References




	[2]	Christ, M., Kempa-Liehr, A.W. and Feindt, M. (2016).
Distributed and parallel time series feature extraction for industrial big data applications.
ArXiv e-prints: 1610.07717
https://arxiv.org/abs/1610.07717





	
tsfresh.feature_selection.significance_tests.target_binary_feature_binary_test(x, y, settings=None)

	Calculate the feature significance of a binary feature to a binary target as a p-value.
Use the two-sided univariate fisher test from fisher_exact() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html#scipy.stats.fisher_exact] for this.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the binary feature vector

	y (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the binary target vector

	settings (FeatureSignificanceTestsSettings or None [https://docs.python.org/2.7/library/constants.html#None]) – The settings object to control how the significance is calculated (currently unused).






	Returns:	the p-value of the feature significance test. Lower p-values indicate a higher feature significance




	Return type:	float [https://docs.python.org/2.7/library/functions.html#float]




	Raise:	ValueError if the target or the feature is not binary.












	
tsfresh.feature_selection.significance_tests.target_binary_feature_real_test(x, y, settings)

	Calculate the feature significance of a real-valued feature to a binary target as a p-value.
Use either the Mann-Whitney U or Kolmogorov Smirnov from  mannwhitneyu() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html#scipy.stats.mannwhitneyu] or
ks_2samp() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html#scipy.stats.ks_2samp] for this.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the real-valued feature vector

	y (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the binary target vector

	settings (FeatureSignificanceTestsSettings) – The settings object to control how the significance is calculated.






	Returns:	the p-value of the feature significance test. Lower p-values indicate a higher feature significance




	Return type:	float [https://docs.python.org/2.7/library/functions.html#float]




	Raise:	ValueError if the target is not binary.












	
tsfresh.feature_selection.significance_tests.target_real_feature_binary_test(x, y, settings=None)

	Calculate the feature significance of a binary feature to a real-valued target as a p-value.
Use the Kolmogorov-Smirnov test from from ks_2samp() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html#scipy.stats.ks_2samp] for this.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the binary feature vector

	y (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the real-valued target vector

	settings (FeatureSignificanceTestsSettings or None [https://docs.python.org/2.7/library/constants.html#None]) – The settings object to control how the significance is calculated (currently unused).






	Returns:	the p-value of the feature significance test. Lower p-values indicate a higher feature significance.




	Return type:	float [https://docs.python.org/2.7/library/functions.html#float]




	Raise:	ValueError if the feature is not binary.












	
tsfresh.feature_selection.significance_tests.target_real_feature_real_test(x, y, settings=None)

	Calculate the feature significance of a real-valued feature to a real-valued target as a p-value.
Use Kendall’s tau from kendalltau() [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kendalltau.html#scipy.stats.kendalltau] for this.





	Parameters:	
	x (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the real-valued feature vector

	y (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – the real-valued target vector

	settings (FeatureSignificanceTestsSettings or None [https://docs.python.org/2.7/library/constants.html#None]) – The settings object to control how the significance is calculated (currently unused).






	Returns:	the p-value of the feature significance test. Lower p-values indicate a higher feature significance.




	Return type:	float [https://docs.python.org/2.7/library/functions.html#float]














Module contents

The feature_selection module contains feature selection algorithms.
Those methods were suited to pick the best explaining features out of a massive amount of features.
Often the features have to be picked in situations where one has more features than samples.
Traditional feature selection methods can be not suitable for such situations which is why we propose a p-value based
approach that inspects the significance of the features individually to avoid overfitting and spurious correlations.







          

      

      

    

  

    
      
          
            
  
tsfresh.scripts package


Submodules




tsfresh.scripts.run_tsfresh module

Run the script with:
```
python run_tsfresh.py path_to_your_csv.csv


System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/envs/v0.7.0/local/lib/python2.7/site-packages/tsfresh/scripts/run_tsfresh.py:docstring of tsfresh.scripts.run_tsfresh, line 1); backlink

Inline literal start-string without end-string.


	Currently this only samples to first 50 values.

	Your csv must be space delimited.

	Output is saved as path_to_your_csv.features.csv



`
e.g.:
`
python run_tsfresh.py data.txt
```


System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/envs/v0.7.0/local/lib/python2.7/site-packages/tsfresh/scripts/run_tsfresh.py:docstring of tsfresh.scripts.run_tsfresh, line 9); backlink

Inline literal start-string without end-string.


System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/envs/v0.7.0/local/lib/python2.7/site-packages/tsfresh/scripts/run_tsfresh.py:docstring of tsfresh.scripts.run_tsfresh, line 9); backlink

Inline interpreted text or phrase reference start-string without end-string.

A corresponding csv containing time series features will be
saved as features_path_to_your_csv.csv


	
tsfresh.scripts.run_tsfresh.main(console_args=None)

	






Module contents







          

      

      

    

  

    
      
          
            
  
tsfresh.transformers package


Submodules




tsfresh.transformers.feature_augmenter module


	
class tsfresh.transformers.feature_augmenter.FeatureAugmenter(settings=None, column_id=None, column_sort=None, column_kind=None, column_value=None, timeseries_container=None)

	Bases: sklearn.base.BaseEstimator [http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator], sklearn.base.TransformerMixin [http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin]

Sklearn-compatible estimator, for calculating and adding many features calculated from a given time series
to the data. Is is basically a wrapper around extract_features().

The features include basic ones like min, max or median, and advanced features like fourier
transformations or statistical tests. For a list of all possible features, see the module
feature_calculators. The column name of each added feature contains the name
of the function of that module, which was used for the calculation.

For this estimator, two datasets play a crucial role:


	the time series container with the timeseries data. This container (for the format see Data Formats)
contains the data which is used for calculating the
features. It must be groupable by ids which are used to identify which feature should be attached to which row
in the second dataframe:

	the input data, where the features will be added to.



Imagine the following situation: You want to classify 10 different financial shares and you have their development
in the last year as a time series. You would then start by creating features from the metainformation of the
shares, e.g. how long they were on the market etc. and filling up a table - the features of one stock in one row.

>>> df = pandas.DataFrame()
>>> # Fill in the information of the stocks
>>> df["started_since_days"] = 0 # add a feature





You can then extract all the features from the time development of the shares, by using this estimator:

>>> time_series = read_in_timeseries() # get the development of the shares
>>> from tsfresh.transformers import FeatureAugmenter
>>> augmenter = FeatureAugmenter()
>>> augmenter.set_timeseries_container(time_series)
>>> df_with_time_series_features = augmenter.transform(df)





The settings for the feature calculation can be controlled with the settings object. If you pass None, the default
settings are used. Please refer to FeatureExtractionSettings for
more information.

This estimator does not select the relevant features, but calculates and adds all of them to the DataFrame. See the
RelevantFeatureAugmenter for calculating and selecting
features.

For a description what the parameters column_id, column_sort, column_kind and column_value mean, please see
extraction.


	
fit(X=None, y=None)

	The fit function is not needed for this estimator. It just does nothing and is here for compatibility reasons.





	Parameters:	
	X (Any) – Unneeded.

	y (Any) – Unneeded.






	Returns:	The estimator instance itself




	Return type:	FeatureAugmenter












	
set_timeseries_container(timeseries_container)

	Set the timeseries, with which the features will be calculated. For a format of the time series container,
please refer to extraction. The timeseries must contain the same indices
as the later DataFrame, to which the features will be added (the one you will pass to transform()). You
can call this function as often as you like, to change the timeseries later (e.g. if you want to extract for
different ids).





	Parameters:	timeseries_container (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – The timeseries as a pandas.DataFrame or a dict. See
extraction for the format.


	Returns:	None


	Return type:	None [https://docs.python.org/2.7/library/constants.html#None]










	
transform(X)

	Add the features calculated using the timeseries_container and add them to the corresponding rows in the input
pandas.DataFrame X.

To save some computing time, you should only include those time serieses in the container that you
need. You can set the timeseries container with the method set_timeseries_container().





	Parameters:	X (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]) – the DataFrame to which the calculated timeseries features will be added. This is not the
dataframe with the timeseries itself.


	Returns:	The input DataFrame, but with added features.


	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]
















tsfresh.transformers.feature_selector module


	
class tsfresh.transformers.feature_selector.FeatureSelector(settings=None)

	Bases: sklearn.base.BaseEstimator [http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator], sklearn.base.TransformerMixin [http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin]

Sklearn-compatible estimator, for reducing the number of features in a dataset to only those,
that are relevant and significant to a given target. It is basically a wrapper around
check_fs_sig_bh().

The check is done by testing the hypothesis


[image: H_0] = the Feature is not relevant and can not be added`


against


[image: H_1] = the Feature is relevant and should be kept


using several statistical tests (depending on whether the feature or/and the target is binary
or not). Using the Benjamini Hochberg procedure, only features in [image: H_0] are rejected.

You can control how the significance tests are executed by handing in a settings object. Please refer to
FeatureSignificanceTestsSettings for more information.
If you do not pass a settings object, the defaults are used.

This estimator - as most of the sklearn estimators - works in a two step procedure. First, it is fitted
on training data, where the target is known:

>>> X_train, y_train = pd.DataFrame(), pd.Series() # fill in with your features and target
>>> from tsfresh.transformers import FeatureSelector
>>> selector = FeatureSelector()
>>> selector.fit(X_train, y_train)





The estimator keeps track on those features, that were relevant in the training step. If you
apply the estimator after the training, it will delete all other features in the testing
data sample:

>>> X_test = pd.DataFrame()
>>> X_selected = selector.transform(X_test)





After that, X_selected will only contain the features that were relevant during the training.

If you are interested in more information on the features, you can look into the member
relevant_features after the fit.


	
fit(X, y)

	Extract the information, which of the features are relevent using the given target.

For more information, please see the check_fs_sig_bh()
function. All columns in the input data sample are treated as feature. The index of all
rows in X must be present in y.





	Parameters:	
	X (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or numpy.array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]) – data sample with the features, which will be classified as relevent or not

	y (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] or numpy.array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]) – target vecotr to be used, to classify the features






	Returns:	the fitted estimator with the information, which features are relevant




	Return type:	FeatureSelector












	
transform(X)

	Delete all features, which were not relevant in the fit phase.





	Parameters:	X (pandas.DataSeries or numpy.array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]) – data sample with all features, which will be reduced to only those that are relevant


	Returns:	same data sample as X, but with only the relevant features


	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or numpy.array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]
















tsfresh.transformers.relevant_feature_augmenter module


	
class tsfresh.transformers.relevant_feature_augmenter.RelevantFeatureAugmenter(evaluate_only_added_features=True, feature_selection_settings=None, feature_extraction_settings=None, column_id=None, column_sort=None, column_kind=None, column_value=None, timeseries_container=None)

	Bases: sklearn.base.BaseEstimator [http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html#sklearn.base.BaseEstimator], sklearn.base.TransformerMixin [http://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html#sklearn.base.TransformerMixin]

Sklearn-compatible estimator to calculate relevant features out of a time series and add them to a data sample.

As many other sklearn estimators, this estimator works in two steps:

In the fit phase, all possible time series features are calculated using the time series, that is set by the
set_timeseries_container function (if the features are not manually changed by handing in a
feature_extraction_settings object). Then, their significance and relevance to the target is computed using
statistical methods and only the relevant ones are selected using the Benjamini Hochberg procedure. These features
are stored internally.

In the transform step, the information on which features are relevant from the fit step is used and those features
are extracted from the time series. These extracted features are then added to the input data sample.

This estimator is a wrapper around most of the functionality in the tsfresh package. For more information on the
subtasks, please refer to the single modules and functions, which are:


	Settings for the feature extraction: FeatureExtractionSettings

	Feature extraction method: extract_features()

	Extracted features: feature_calculators

	Settings for the feature selection: FeatureSignificanceTestsSettings

	Feature selection: check_fs_sig_bh()



This estimator works in a similar fashion as the FeatureAugmenter with
the difference that this estimator only output and calculate the relevant features,
whereas the other outputs all features.

Also for this estimator, two datasets play a crucial role:


	the time series container with the timeseries data. This container (for the format see
extraction) contains the data which is used for calculating the
features. It must be groupable by ids which are used to identify which feature should be attached to which row
in the second dataframe:

	the input data, where the features will be added to.



Imagine the following situation: You want to classify 10 different financial shares and you have their development
in the last year as a time series. You would then start by creating features from the metainformation of the
shares, e.g. how long they were on the market etc. and filling up a table - the features of one stock in one row.

>>> # Fill in the information of the stocks and the target
>>> X_train, X_test, y_train = pd.DataFrame(), pd.DataFrame(), pd.Series()





You can then extract all the relevant features from the time development of the shares, by using this estimator:

>>> train_time_series, test_time_series = read_in_timeseries() # get the development of the shares
>>> from tsfresh.transformers import RelevantFeatureAugmenter
>>> augmenter = RelevantFeatureAugmenter()
>>> augmenter.set_timeseries_container(train_time_series)
>>> augmenter.fit(X_train, y_train)
>>> augmenter.set_timeseries_container(test_time_series)
>>> X_test_with_features = augmenter.transform(X_test)





X_test_with_features will then contain the same information as X_test (with all the meta information you have
probably added) plus some relevant time series features calculated on the time series you handed in.

Please keep in mind that the time series you hand in before fit or transform must contain data for the rows that are
present in X.

If your set evaluate_only_added_features to True, your manually-created features that were present in X_train (or
X_test) before using this estimator are not touched. Otherwise, also those features are evaluated and may be
rejected from the data sample, because they are irrelevant.

For a description what the parameters column_id, column_sort, column_kind and column_value mean, please see
extraction.

You can control the feature extraction in the fit step (the feature extraction in the transform step is done
automatically) as well as the feature selection in the fit step by handing in settings objects of the type
FeatureExtractionSettings and
FeatureSignificanceTestsSettings. However, the default settings which
are used if you pass no objects are often quite sensible.


	
fit(X, y)

	Use the given timeseries from set_timeseries_container() and calculate features from it and add them
to the data sample X (which can contain other manually-designed features).

Then determine which of the features of X are relevant for the given target y.
Store those relevant features internally to only extract them in the transform step.

If evaluate_only_added_features is True, only reject newly, automatically added features. If it is False,
also look at the features that are already present in the DataFrame.





	Parameters:	
	X (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or numpy.array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]) – The data frame without the time series features. The index rows should be present in the timeseries
and in the target vector.

	y (pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series] or numpy.array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]) – The target vector to define, which features are relevant.






	Returns:	the fitted estimator with the information, which features are relevant.




	Return type:	RelevantFeatureAugmenter












	
set_timeseries_container(timeseries_container)

	Set the timeseries, with which the features will be calculated. For a format of the time series container,
please refer to extraction. The timeseries must contain the same indices
as the later DataFrame, to which the features will be added (the one you will pass to transform() or
fit()). You can call this function as often as you like, to change the timeseries later
(e.g. if you want to extract for different ids).





	Parameters:	timeseries_container (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – The timeseries as a pandas.DataFrame or a dict. See
extraction for the format.


	Returns:	None


	Return type:	None [https://docs.python.org/2.7/library/constants.html#None]










	
transform(X)

	After the fit step, it is known which features are relevant. Only extract those from the time series handed in
with the function set_timeseries_container().

If evaluate_only_added_features is False, also delete the irrelevant, already present features in the data frame.





	Parameters:	X (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or numpy.array [https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array]) – the data sample to add the relevant (and delete the irrelevant) features to.


	Returns:	a data sample with the same information as X, but with added relevant time series features and
deleted irrelevant information (only if evaluate_only_added_features is False).


	Return type:	pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]
















Module contents

The module transformers contains several transformers which can be used inside a sklearn pipeline.







          

      

      

    

  

    
      
          
            
  
tsfresh.utilities package


Submodules




tsfresh.utilities.dataframe_functions module

Utility functions for handling the DataFrame conversions to the internal normalized format
(see normalize_input_to_internal_representation) or on how to handle NaN and inf in the DataFrames.


	
tsfresh.utilities.dataframe_functions.check_for_nans_in_columns(df, columns=None)

	Helper function to check for NaN in the data frame and raise a ValueError if there is one.





	Parameters:	
	df (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]) – the pandas DataFrame to test for NaNs

	columns (list [https://docs.python.org/2.7/library/functions.html#list]) – a list of columns to test for NaNs. If left empty, all columns of the DataFrame will be tested.






	Returns:	None




	Return type:	None [https://docs.python.org/2.7/library/constants.html#None]




	Raise:	ValueError of NaNs are found in the DataFrame.












	
tsfresh.utilities.dataframe_functions.get_range_values_per_column(df)

	Retrieves the finite max, min and mean values per column in the DataFrame df and stores them in three
dictionaries. Those dictionaries col_to_max, col_to_min, col_to_median map the columnname to the maximal,
minimal or median value of that column.

If a column does not contain any finite values at all, a 0 is stored instead.





	Parameters:	df (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]) – the Dataframe to get columnswise max, min and median from


	Returns:	Dictionaries mapping column names to max, min, mean values


	Return type:	(dict [https://docs.python.org/2.7/library/stdtypes.html#dict], dict [https://docs.python.org/2.7/library/stdtypes.html#dict], dict [https://docs.python.org/2.7/library/stdtypes.html#dict])










	
tsfresh.utilities.dataframe_functions.impute(df_impute)

	Columnwise replaces all NaNs and infs from the DataFrame df_impute with average/extreme values from
the same columns. This is done as follows: Each occurring inf or NaN in df_impute is replaced by



	-inf -> min

	+inf -> max

	NaN -> median






If the column does not contain finite values at all, it is filled with zeros.

This function modifies df_impute in place. After that, df_impute is guaranteed to not contain any non-finite
values. Also, all columns will be guaranteed to be of type np.float64.





	Parameters:	df_impute (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]) – DataFrame to impute


	Return df_impute:

	 	imputed DataFrame


	Rtype df_impute:

	 	pandas.DataFrame










	
tsfresh.utilities.dataframe_functions.impute_dataframe_range(df_impute, col_to_max, col_to_min, col_to_median)

	Columnwise replaces all NaNs, -inf and +inf from the DataFrame df_impute with average/extreme values
from the provided dictionaries.

This is done as follows: Each occurring inf or NaN in df_impute is replaced by



	-inf -> by value in col_to_min

	+inf -> by value in col_to_max

	NaN -> by value in col_to_median






If a column of df_impute is not found in the one of the dictionaries, this method will raise a ValueError.
Also, if one of the values to replace is not finite a ValueError is returned

This function modifies df_impute in place. Afterwards df_impute is
guaranteed to not contain any non-finite values.
Also, all columns will be guaranteed to be of type np.float64.





	Parameters:	
	df_impute (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]) – DataFrame to impute

	col_to_max (dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – Dictionary mapping column names to max values

	col_to_min – Dictionary mapping column names to min values

	col_to_median – Dictionary mapping column names to median values






	Return df_impute:

	 	imputed DataFrame




	Rtype df_impute:

	 	pandas.DataFrame




	Raises:	ValueError – if a column of df_impute is missing in col_to_max, col_to_min or col_to_median or a value
to replace is non finite












	
tsfresh.utilities.dataframe_functions.impute_dataframe_zero(df_impute)

	Replaces all NaNs, -infs and +infs from the DataFrame df_impute with 0s.
The df_impute will be modified in place. All its columns will be into converted into dtype np.float64.





	Parameters:	df_impute (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame]) – DataFrame to impute


	Return df_impute:

	 	imputed DataFrame


	Rtype df_impute:

	 	pandas.DataFrame










	
tsfresh.utilities.dataframe_functions.normalize_input_to_internal_representation(df_or_dict, column_id, column_sort, column_kind, column_value)

	Try to transform any given input to the internal representation of time series, which is a mapping from string
(the kind) to a pandas DataFrame with exactly two columns (the value and the id).

This function can transform pandas DataFrames in different formats or dictionaries to pandas DataFrames in different
formats. It is used internally in the extract_features function and should not be called by the user.





	Parameters:	
	df_or_dict (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – a pandas DataFrame or a dictionary. The required shape/form of the object depends on the rest of
the passed arguments.

	column_id (basestring [https://docs.python.org/2.7/library/functions.html#basestring] or None [https://docs.python.org/2.7/library/constants.html#None]) – it must be present in the pandas DataFrame or in all DataFrames in the dictionary.
It is not allowed to have NaN values in this column.

	column_sort (basestring [https://docs.python.org/2.7/library/functions.html#basestring] or None [https://docs.python.org/2.7/library/constants.html#None]) – if not None, sort the rows by this column. It is not allowed to
have NaN values in this column.

	column_kind (basestring [https://docs.python.org/2.7/library/functions.html#basestring] or None [https://docs.python.org/2.7/library/constants.html#None]) – It can only be used when passing a pandas DataFrame (the dictionary is already assumed to be
grouped by the kind). Is must be present in the DataFrame and no NaN values are allowed. The DataFrame
will be grouped by the values in the kind column and each group will be one entry in the resulting
mapping.
If the kind column is not passed, it is assumed that each column in the pandas DataFrame (except the id or
sort column) is a possible kind and the DataFrame is split up into as many DataFrames as there are columns.
Except when a value column is given: then it is assumed that there is only one column.

	column_value (basestring [https://docs.python.org/2.7/library/functions.html#basestring] or None [https://docs.python.org/2.7/library/constants.html#None]) – If it is given, it must be present and not-NaN on the pandas DataFrames (or all pandas
DataFrames in the dictionaries). If it is None, it is assumed that there is only a single remaining column
in the DataFrame(s) (otherwise an exception is raised).






	Returns:	A tuple of 3 elements: the normalized DataFrame as a dictionary mapping from the kind (as a string) to the
corresponding DataFrame, the name of the id column and the name of the value column




	Return type:	(dict [https://docs.python.org/2.7/library/stdtypes.html#dict], basestring [https://docs.python.org/2.7/library/functions.html#basestring], basestring [https://docs.python.org/2.7/library/functions.html#basestring])




	Raise:	ValueError when the passed combination of parameters is wrong or does not fit to the input DataFrame
or dict.












	
tsfresh.utilities.dataframe_functions.restrict_input_to_index(df_or_dict, column_id, index)

	Restrict df_or_dict to those ids contained in index.





	Parameters:	
	df_or_dict (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – a pandas DataFrame or a dictionary.

	column_id (basestring [https://docs.python.org/2.7/library/functions.html#basestring]) – it must be present in the pandas DataFrame or in all DataFrames in the dictionary.
It is not allowed to have NaN values in this column.

	index (Iterable or pandas.Series [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html#pandas.Series]) – Index containing the ids






	Return df_or_dict_restricted:

	 	the restricted df_or_dict




	Rtype df_or_dict_restricted:

	 	dict or pandas.DataFrame




	Raise:	TypeError if df_or_dict is not of type dict or pandas.DataFrame












	
tsfresh.utilities.dataframe_functions.roll_time_series(df_or_dict, column_id, column_sort, column_kind, rolling_direction)

	Roll the (sorted) data frames for each kind and each id separately in the “time” domain
(which is represented by the sort order of the sort column given by column_sort).

For each rolling step, a new id is created by the scheme “id={id}, shift={shift}”, here id is the former id of the
column and shift is the amount of “time” shifts.

A few remarks:



	This method will create new IDs!

	The sign of rolling defines the direction of time rolling, a positive value means we are going back in time

	It is possible to shift time series of different lenghts but

	We assume that the time series are uniformly sampled

	For more information, please see How to handle rolling time series.










	Parameters:	
	df_or_dict (pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] or dict [https://docs.python.org/2.7/library/stdtypes.html#dict]) – a pandas DataFrame or a dictionary. The required shape/form of the object depends on the rest of
the passed arguments.

	column_id (basestring [https://docs.python.org/2.7/library/functions.html#basestring] or None [https://docs.python.org/2.7/library/constants.html#None]) – it must be present in the pandas DataFrame or in all DataFrames in the dictionary.
It is not allowed to have NaN values in this column.

	column_sort (basestring [https://docs.python.org/2.7/library/functions.html#basestring] or None [https://docs.python.org/2.7/library/constants.html#None]) – if not None, sort the rows by this column. It is not allowed to
have NaN values in this column.

	column_kind (basestring [https://docs.python.org/2.7/library/functions.html#basestring] or None [https://docs.python.org/2.7/library/constants.html#None]) – It can only be used when passing a pandas DataFrame (the dictionary is already assumed to be
grouped by the kind). Is must be present in the DataFrame and no NaN values are allowed.
If the kind column is not passed, it is assumed that each column in the pandas DataFrame (except the id or
sort column) is a possible kind.

	rolling_direction (int [https://docs.python.org/2.7/library/functions.html#int]) – The sign decides, if to roll backwards or forwards in “time”






	Returns:	The rolled data frame or dictionary of data frames




	Return type:	the one from df_or_dict














tsfresh.utilities.helper_functions module

Some helper functions.


	
tsfresh.utilities.helper_functions.calculate_best_chunksize(iterable_list, settings)

	Helper function to calculate the best chunksize for a given number of elements to calculate,
or use the one in the settings object.

The formula is more or less an empirical result.
:param iterable_list: A list which defines how many calculations there need to be.
:param settings: The settings object where the chunksize may already be given (or not).
:return: The chunksize which should be used.

TODO: Investigate which is the best chunk size for different settings.








tsfresh.utilities.profiling module

Contains methods to start and stop the profiler that checks the runtime of the different feature calculators


	
tsfresh.utilities.profiling.end_profiling(profiler, filename, sorting=None)

	Helper function to stop the profiling process and write out the profiled
data into the given filename. Before this, sort the stats by the passed sorting.





	Parameters:	
	profiler (cProfile.Profile) – An already started profiler (probably by start_profiling).

	filename (basestring [https://docs.python.org/2.7/library/functions.html#basestring]) – The name of the output file to save the profile.

	sorting (basestring [https://docs.python.org/2.7/library/functions.html#basestring]) – The sorting of the statistics passed to the sort_stats function.






	Returns:	None




	Return type:	None [https://docs.python.org/2.7/library/constants.html#None]







Start and stop the profiler with:

>>> profiler = start_profiling()
>>> # Do something you want to profile
>>> end_profiling(profiler, "out.txt", "cumulative")










	
tsfresh.utilities.profiling.start_profiling()

	Helper function to start the profiling process and return the profiler (to close it later).





	Returns:	a started profiler.


	Return type:	cProfile.Profile





Start and stop the profiler with:

>>> profiler = start_profiling()
>>> # Do something you want to profile
>>> end_profiling(profiler, "cumulative", "out.txt")












Module contents

This utilities submodule contains several utility functions.
Those should only be used internally inside tsfresh.







          

      

      

    

  

    
      
          
            
  
Data Formats

tsfresh offers three different options to specify the time series data to be used in the tsfresh.extract_features()
function. Irrespective of the input format, tsfresh will always return the calculated features in the same output format.

All three input format options consist of pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] objects. There are four important column types that
make up those DataFrames:

Mandatory





	column_id:	This column indicates which entities the time series belong to. Features will be extracted individually for each
entity. The resulting feature matrix will contain one row per entity.


	column_value:	This column contains the actual values of the time series.





Optional (but strongly recommended to specify)





	column_sort:	This column contains values which allow to sort the time series (e.g. time stamps). It is not required to
have equidistant time steps or the same time scale for the different ids and/or kinds.
If you omit this column, the DataFrame is assumed to be already sorted in increasing order.





Optional





	column_kind:	This column indicates the names of the different time series types (E.g. different sensors in an
industrial application). For each kind of time series the features are calculated individually.





Important: None of these columns is allowed to contain any NaN, Inf or -Inf values.


	Now there are three slightly different input formats for the time series data:

	
	A flat DataFrame

	A stacked DataFrame

	A dictionary of flat DataFrames







The difference between a flat and a stacked DataFrame is indicated by specifying or not specifying the parameters
column_value and column_kind in the extract_features function.


Input Option 1. Flat DataFrame

If both column_value and column_kind are set to None, the  time series data is assumed to be in a flat
DataFrame. This means that each different time series is saved as its own column.

Example: Imagine you record the values of time series x and y for different objects A and B for three different times t1, t2 and
t3. Now you want to calculate some feature with tsfresh. Your resulting DataFrame has to look like this:









	id
	time
	x
	y




	A
	t1
	x(A, t1)
	y(A, t1)


	A
	t2
	x(A, t2)
	y(A, t2)


	A
	t3
	x(A, t3)
	y(A, t3)


	B
	t1
	x(B, t1)
	y(B, t1)


	B
	t2
	x(B, t2)
	y(B, t2)


	B
	t3
	x(B, t3)
	y(B, t3)





and you would pass

column_id="id", column_sort="time", column_kind=None, column_value=None





to the extraction functions.




Input Option 2. Stacked DataFrame

If both column_value and column_kind are set, the time series data is assumed to be a stacked DataFrame.
This means that there are no different columns for the different type of time series.
This representation has several advantages over the flat Data Frame.
For example, the time stamps of the different time series do not have to align.

It does not contain different columns for the different types of time series but only one
value column and a kind column:









	id
	time
	kind
	value




	A
	t1
	x
	x(A, t1)


	A
	t2
	x
	x(A, t2)


	A
	t3
	x
	x(A, t3)


	A
	t1
	y
	y(A, t1)


	A
	t2
	y
	y(A, t2)


	A
	t3
	y
	y(A, t3)


	B
	t1
	x
	x(B, t1)


	B
	t2
	x
	x(B, t2)


	B
	t3
	x
	x(B, t3)


	B
	t1
	y
	y(B, t1)


	B
	t2
	y
	y(B, t2)


	B
	t3
	y
	y(B, t3)





Then you would set

column_id="id", column_sort="time", column_kind="kind", column_value="value"








Input Option 3. Dictionary of flat DataFrames

Instead of passing a DataFrame which must be split up by its different kinds, you can also give a dictionary mapping
from the kind as string to a DataFrame containing only the time series data of that kind.
So essentially you are using a singular DataFrame for each kind of time series.

The data from the example can be split into two DataFrames resulting in the following dictionary

{ “x”:









	id
	time
	value




	A
	t1
	x(A, t1)


	A
	t2
	x(A, t2)


	A
	t3
	x(A, t3)


	B
	t1
	x(B, t1)


	B
	t2
	x(B, t2)


	B
	t3
	x(B, t3)








,
“y”:









	id
	time
	value




	A
	t1
	y(A, t1)


	A
	t2
	y(A, t2)


	A
	t3
	y(A, t3)


	B
	t1
	y(B, t1)


	B
	t2
	y(B, t2)


	B
	t3
	y(B, t3)








}

tsfresh would be passed this dictionary and the following arguments

column_id="id", column_sort="time", column_kind=None, column_value="value":





In this case we do not need to specify the kind column as the kind is the respective dictionary key.




Output Format

The resulting feature matrix for all three input options will be the same.
It will always be a pandas.DataFrame [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html#pandas.DataFrame] with the following layout












	id
	x_feature_1
	...
	x_feature_N
	y_feature_1
	...
	y_feature_N




	A
	...
	...
	...
	...
	...
	...


	B
	...
	...
	...
	...
	...
	...





where the x features are calculated using all x values (independently for A and B), y features using all y values and so
on.







          

      

      

    

  

    
      
          
            
  
scikit-learn Transformers

tsfresh includes three scikit-learn compatible transformers.
You can easily add them to your existing data science pipeline.
If you are not familiar with scikit-learn’s pipeline we recommend you take a look at the official documentation [1].

The purpose of such a pipeline is to assemble several preprocessing steps that can be cross-validated together while
setting different parameters.
Our tsfresh transformer allows you to extract and filter the time series features during such a preprocessing sequence.

The first two estimators contained in tsfresh are the FeatureAugmenter,
which extracts the features, and the FeatureSelector, which only
performs the feature selection algorithm.
It is preferable to combine extracting and filtering of the features in a single step to avoid unnecessary feature
calculations.
Hence, we have the RelevantFeatureAugmenter, which combines both the
extraction and filtering of the features in a single step.


Example

In the following example you see how we combine tsfresh’s RelevantFeatureAugmenter
and a RandomForestClassifier [http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier] into a single pipeline.
This pipeline can then fit both our transformer and the classifier in one step.

from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
from tsfresh.examples import load_robot_execution_failures
from tsfresh.transformers import RelevantFeatureAugmenter

pipeline = Pipeline([('augmenter', RelevantFeatureAugmenter(column_id='id', column_sort='time')),
            ('classifier', RandomForestClassifier())])

df_ts, y = load_robot_execution_failures()
X = pd.DataFrame(index=y.index)

pipeline.set_params(augmenter__timeseries_container=df_ts)
pipeline.fit(X, y)





The parameters of the augment transformer correspond to the parameters of the top-level convenience function
extract_relevant_features().
In the example, we only set the names of two columns column_id='id', column_sort='time'
(see Data Formats for an explanation of those parameters).

Because we cannot pass the time series container directly as a parameter to the augmenter step when calling fit or
transform on a sklearn.pipeline.Pipeline [http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline] we have to set it manually by calling
pipeline.set_params(augmenter__timeseries_container=df_ts).
In general, you can change the time series container from which the features are extracted by calling either the
pipeline’s set_params() method or the transformers
set_timeseries_container() method.

For further examples, see the Jupyter Notebook pipeline_example.ipynb in the notebooks folder of the tsfresh package.




References
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Feature Calculation


Overview on extracted feature

tsfresh already calculates a comprehensive number of features. If you are interested in which features are calculated, just
go to our

tsfresh.feature_extraction.feature_calculators

module. You will find the documentation of every calculated feature there.




Feature naming

tsfresh enforces a strict naming of the created features, which you have to follow whenever you create new feature
calculators.
This is due to the tsfresh.feature_extraction.FeatureExtractionSettings.from_columns() method which needs to
deduce the following information from the feature name



	the time series that was used to calculate the feature

	the feature calculator method that was used to derive the feature

	all parameters that have been used to calculate the feature (optional)






Hence, to enable the tsfresh.feature_extraction.FeatureExtractionSettings.from_columns() to deduce all the
necessary conditions, the features will be named in the following format


{time_series_name}__{feature_name}__{parameter name 1}_{parameter value 1}__[..]__{parameter name k}_{parameter value k}


(Here we assumed that {feature_name} has k parameters).




Examples for feature naming

So for example the following feature name


temperature_1__quantile__q_0.6


is the value of the feature tsfresh.feature_extraction.feature_calculators.quantile() for the time series
`temperature_1` and a parameter value of q=0.6. On the other hand, the feature named


Pressure 5__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_5


denotes the value of the feature tsfresh.feature_extraction.feature_calculators.cwt_coefficients() for
the time series `Pressure 5` under parameter values of widths=(2, 5, 10, 20), coeff=14 and w=5.







          

      

      

    

  

    
      
          
            
  
Feature filtering

The all-relevant problem of feature selection is the identification of all strongly and weakly relevant attributes.
This problem is especially hard to solve for time series classification and regression in industrial applications such
as predictive maintenance or production line optimization, for which each label or regression target is associated with
several time series and meta-information simultaneously.

To limit the number of irrelevant features, tsfresh deploys the fresh algorithm (fresh stands for FeatuRe Extraction
based on Scalable Hypothesis tests) [1].

The algorithm is called by tsfresh.feature_selection.feature_selector.check_fs_sig_bh().
It is an efficient, scalable feature extraction algorithm, which filters the available features in an early stage of the
machine learning pipeline with respect to their significance for the classification or regression task, while
controlling the expected percentage of selected but irrelevant features.

The filtering process consists of three phases which are sketched in the following figure:

[image: the time series]

Phase 1 - Feature extraction

Firstly, the algorithm characterizes time series with comprehensive and well-established feature mappings and considers
additional features describing meta-information.
The feature calculators used to derive the features are contained in tsfresh.feature_extraction.feature_calculators.

In the figure from above, this corresponds to the change from raw time series to aggregated features.




Phase 2 - Feature significance testing

In a second step, each feature vector is individually and independently evaluated with respect to its significance for
predicting the target under investigation.
Those tests are contained in the submodule tsfresh.feature_selection.significance_tests.
The result of these tests is a vector of p-values, quantifying the significance of each feature for predicting the
label/target.

In the figure from above, this corresponds to the change from aggregated features to p-values.




Phase 3 - Multiple test procedure

The vector of p-values is evaluated on basis of the Benjamini-Yekutieli procedure [2] in order to decide which features
to keep.
This multiple testing procedure is contained in the submodule tsfresh.feature_selection.feature_selector.

In the figure from above, this corresponds to the change from p-values to selected features.




References





	[1]	Christ, M., Kempa-Liehr, A.W. and Feindt, M. (2016).
Distributed and parallel time series feature extraction for industrial big data applications.
ArXiv e-prints: 1610.07717 URL: http://adsabs.harvard.edu/abs/2016arXiv161007717C
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The control of the false discovery rate in multiple testing under dependency.
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How to add a custom feature

It may be beneficial to add a custom feature to those that are calculated by tsfresh. To do so, one has to adapt certain
steps:


Step 1. Decide which type of feature you want to implement

In tsfresh we differentiate between three types of feature calculation methods


1. aggregate features without parameter

2. aggregate features with parameter

3. apply features with parameters




So if you want to add a singular feature with out any parameters, stick with 1., the aggregate feature without
parameters.

Then, if your features can be calculated independently for each possible parameter set, stick with type 2., the
aggregate features with parameters.

If both cases from above do not apply, because it is beneficial to calculate the features for the different
parameter settings at the same time (to e.g. perform auxiliary calculations only once for all features), stick with
type 3., the apply features with parameters.




Step 2. Write the feature calculator

Depending on which type of feature you are implementing, you can use the following feature calculator skeletons:

1. aggregate features without parameter

@set_property("fctype", "aggregate")
def your_feature_calculator(x):
    """
    The description of your feature

    :param x: the time series to calculate the feature of
    :type x: pandas.Series
    :return: the value of this feature
    :return type: bool or float
    """
    # Calculation of feature as float, int or bool
    f = f(x)
    return f





2. aggregate features with parameter

@set_property("fctype", "aggregate_with_parameters")
def your_feature_calculator(x, p1, p2, ...):
    """
    Description of your feature

    :param x: the time series to calculate the feature of
    :type x: pandas.Series
    :param p1: description of your parameter p1
    :type p1: type of your parameter p1
    :param p2: description of your parameter p2
    :type p2: type of your parameter p2
    ...
    :return: the value of this feature
    :return type: bool or float
    """
    # Calculation of feature as float, int or bool
    f = f(x)
    return f





3. apply features with parameters

@set_property("fctype", "apply")
def your_feature_calculator(x, c, param):
    """
    Description of your feature

    :param x: the time series to calculate the feature of
    :type x: pandas.Series
    :param c: the time series name
    :type c: str
    :param param: contains dictionaries {"p1": x, "p2": y, ...} with p1 float, p2 int ...
    :type param: list
    :return: the different feature values
    :return type: pandas.Series
    """
    # Calculation of feature as pandas.Series s, the index is the name of the feature
    s = f(x)
    return s





After implementing the feature calculator, please add it to the tsfresh.feature_extraction.feature_calculators
submodule. tsfresh will only find feature calculators that are in this submodule.




Step 3. Add custom settings for your feature

Finally, you have to add custom settings if your feature is an apply or aggregate feature with parameters. To do so,
just append your parameters to the name_to_param dictionary inside the
tsfresh.feature_extraction.settings.FeatureExtractionSettings constructor:

name_to_param.update({
    # here are the existing settings
    ...
    # Now the settings of your feature calculator
    "your_feature_calculator" = [{"p1": x, "p2": y, ...} for x,y in ...],
})





That is it, tsfresh will calculate your feature the next time you run it.







          

      

      

    

  

    
      
          
            
  
Parallelization

The feature extraction as well as the feature selection offer the possibility of parallelization.
Out of the box both tasks are parallelized by tsfresh. However, the overhead introduced with the
parallelization should not be underestimated. Here we discuss the different settings to control
the parallelization. To achieve best results for your use-case you should experiment with the parameters.

Please let us know about your results tuning the below mentioned parameters! It will help improve this document as
well as the default settings.


Parallelization of Feature Selection

We use a multiprocessing.Pool to parallelize the calculation of the p-values for each feature. On
instantiation we set the Pool’s number of worker processes to
tsfresh.feature_selection.FeatureSignificanceTestsSettings.n_processes. This field defaults to
the number of processors on the current system. We recommend setting it to the maximum number of available (and
otherwise idle) processors.

The chunksize of the Pool’s map function is another important parameter to consider. It can be set via the
tsfresh.feature_selection.FeatureSignificanceTestsSettings.chunksize field. By default it is up to
multiprocessing.Pool to decide on the chunksize.




Parallelization of Feature Extraction

For the feature extraction tsfresh exposes the parameters
tsfresh.feature_extraction.FeatureExtractionSettings.n_processes and
tsfresh.feature_extraction.FeatureExtractionSettings.chunksize. Both behave similarly to the parameters
for the feature selection.

Additionally there are two options for how the parallelization is done:


	'per_kind' parallelizes the feature calculation per kind of time series.

	'per_sample' parallelizes per kind and per sample.



To enforce an option, either pass 'per_kind' or 'per_sample' as the parallelization= parameter of the
tsfresh.extract_features() function. By default the option is chosen with a rule of thumb:

If the number of different time series (kinds) is less than half of the number of available worker
processes (n_processes) then 'per_sample' is chosen, otherwise 'per_kind'.

Generally, there is no perfect setting for all cases. On the one hand more parallelization can speed up the calculation
as the work is better distributed among the computers resources. On the other hand parallelization
introduces overheads such as copying data to the worker processes, splitting the data to enable the distribution and
combining the results.

Implementing the parallelization we observed the following points:


	For small data sets the difference between parallelization per kind or per sample should be negligible.

	For data sets with one kind of time series parallelization per sample results in a decent speed up that grows
with the number of samples.

	The more kinds of time series the data set contains, the more samples are necessary to make parallelization
per sample worthwhile.

	If the data set contains more kinds of time series than available cpu cores, parallelization per kind is
the way to go.









          

      

      

    

  

    
      
          
            
  
How to handle rolling time series

Lets assume that we have a DataFrame of one of the tsfresh Data Formats.
The “sort” column of such a container gives a sequential state to the individual measurements.
In the case of time series this can be the time dimension while in the case of spectra the order is given by the
wavelength or frequency dimensions.
We can exploit this sequence to generate more input data out of single time series, by rolling over the data.

Imagine the following situation:
You have the data of certain sensors (e.g. EEG measurements) as the base to classify patients into a healthy and not
healthy group (we oversimplify the problem here).
Lets say you have sensor data of 100 time steps, so you may extract features for the forecasting of the patients
healthiness by a classification algorithm.
If you also have measurements of the healthiness for those 100 time steps (this is the target vector), then you could
predict the healthiness of the patient in every time step, which essentially states a time series forecasting problem.
So, to do that, you want to extract features in every time step of the original time series while for example looking at
the last 10 steps.
A rolling mechanism creates such time series for every time step by creating sub time series of the sensor data of the
last 10 time steps.

Another example can be found in streaming data, e.g. in Industry 4.0 applications.
Here you typically get one new data row at a time and use this to for example predict machine failures. To train your model,
you could act as if you would stream the data, by feeding your classifier the data after one time step,
the data after the first two time steps etc.

Both examples imply, that you extract the features not only on the full data set, but also
on all temporal coherent subsets of data, which is the process of rolling. In tsfresh, this is implemented in the
function tsfresh.utilities.dataframe_functions.roll_time_series().

The rolling mechanism takes a time series [image: x] with its data rows [image: [x_1, x_2, x_3, ..., x_n]]
and creates [image: n] new time series [image: \hat x^k], each of them with a different consecutive part
of [image: x]:


[image: \hat x^k = [x_k, x_{k-1}, x_{k-2}, ..., x_1]]


To see what this does in real-world applications, we look into the following example flat DataFrame in tsfresh format









	id
	time
	x
	y




	1
	t1
	1
	5


	1
	t2
	2
	6


	1
	t3
	3
	7


	1
	t4
	4
	8


	2
	t8
	10
	12


	2
	t9
	11
	13





where you have measured the values from two sensors x and y for two different entities (id 1 and 2) in 4 or 2 time
steps (t1 to t9).

Now, we can use tsfresh.utilities.dataframe_functions.roll_time_series() to get consecutive sub-time series.
E.g. if you set rolling to 0, the feature extraction works on the original time series without any rolling.

So it extracts 2 set of features,









	id
	time
	x
	y




	1
	t1
	1
	5


	1
	t2
	2
	6


	1
	t3
	3
	7


	1
	t4
	4
	8





and









	id
	time
	x
	y




	2
	t8
	10
	12


	2
	t9
	11
	13





If you set rolling to 1, the feature extraction works with all of the following time series:









	id
	time
	x
	y




	1
	t1
	1
	5













	id
	time
	x
	y




	1
	t1
	1
	5


	1
	t2
	2
	6













	id
	time
	x
	y




	1
	t1
	1
	5


	1
	t2
	2
	6


	1
	t3
	3
	7


	2
	t8
	10
	12













	id
	time
	x
	y




	1
	t1
	1
	5


	1
	t2
	2
	6


	1
	t3
	3
	7


	1
	t4
	4
	8


	2
	t8
	10
	12


	2
	t9
	11
	13





If you set rolling to -1, you end up with features for the time series, rolled in the other direction









	id
	time
	x
	y




	1
	t4
	4
	8













	id
	time
	x
	y




	1
	t3
	3
	7


	1
	t4
	4
	8













	id
	time
	x
	y




	1
	t2
	2
	6


	1
	t3
	3
	7


	1
	t4
	4
	8


	2
	t9
	11
	13













	id
	time
	x
	y




	1
	t1
	1
	5


	1
	t2
	2
	6


	1
	t3
	3
	7


	1
	t4
	4
	8


	2
	t8
	10
	12


	2
	t9
	11
	13





We only gave an example for the flat DataFrame format, but rolling actually works on all 3 Data Formats
that are supported by tsfresh.





          

      

      

    

  

    
      
          
            
  
FAQ



	Does tsfresh support different time series lengths?
Yes, it supports different time series lengths. However, some feature calculators can demand a minimal length
of the time series. If a shorter time series is passed to the calculator, normally a NaN is returned.

	Is it possible to extract features from rolling/shifted time series?
Yes, the tsfresh.dataframe_functions.roll_time_series() function allows to conviniently create a rolled
time series datframe from your data. You just have to transform your data into one of the supported tsfresh
Data Formats.
Then, the tsfresh.dataframe_functions.roll_time_series() give you a DataFrame with the rolled time series,
that you can pass to tsfresh.
On the following page you can find a detailed description: How to handle rolling time series.
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License

MIT LICENCE

Copyright (c) 2016 Maximilian Christ, Blue Yonder GmbH

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.









          

      

      

    

  

    
      
          
            
  
Changelog

tsfresh uses Semantic Versioning [http://semver.org/]


Version 0.7.0


	new rolling utility to use tsfresh for time series forecasting tasks

	
	bugfixes

	
	index_mass_quantile was using global index of time series container

	an index with same name as id_column was breaking parallelization

	friedrich_coefficients and max_langevin_fixed_point were occasionally stalling














Version 0.6.0


	progress bar for feature selection

	new feature: estimation of largest fixed point of deterministic dynamics

	new notebook: demonstration how to use tsfresh in a pipeline with train and test datasets

	remove no logging handler warning

	fixed bug in the RelevantFeatureAugmenter regarding the evaluate_only_added_features parameters






Version 0.5.0


	new example: driftbif simulation

	further improvements of the parallelization

	language improvements in the documentation

	performance improvements for some features

	performance improvements for the impute function

	new feature and feature renaming: sum_of_recurring_values, sum_of_recurring_data_points






Version 0.4.0


	fixed several bugs: checking of UCI dataset, out of index error for mean_abs_change_quantiles

	added a progress bar denoting the progress of the extraction process

	added parallelization per sample

	added unit tests for comparing results of feature extraction to older snapshots

	added “high_comp_cost” attribute

	added ReasonableFeatureExtraction settings only calculating features without “high_comp_cost” attribute






Version 0.3.1


	fixed several bugs: closing multiprocessing pools / index out of range cwt calculator / division by 0 in index_mass_quantile

	now all warnings are disabled by default

	for a singular type time series data, the name of value column is used as feature prefix






Version 0.3.0


	fixed bug with parsing of “NUMBER_OF_CPUS” environment variable

	now features are calculated in parallel for each type






Version 0.2.0


	now p-values are calculated in parallel

	fixed bugs for constant features

	allow time series columns to be named 0

	moved uci repository datasets to github mirror

	added feature calculator sample_entropy

	added MinimalFeatureExtraction settings

	fixed bug in calculation of fourier coefficients






Version 0.1.2


	added support for python 3.5.2

	fixed bug with the naming of the features that made the naming of features non-deterministic






Version 0.1.1


	mainly fixes for the read-the-docs documentation, the pypi readme and so on






Version 0.1.0


	Initial version :)









          

      

      

    

  

    
      
          
            
  
How to contribute

We want tsfresh to become the biggest archive of feature extraction methods in python. To achieve this goal, we need
your help!

All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. If you
want to add one or two interesting feature calculators, implement a new feature selection process or just fix 1-2 typos,
your help is appreciated.

If you want to help, just create a pull request on our github page. To the new user, working with Git can sometimes be
confusing and frustrating. If you are not familiar with Git you can also contact us by email.


Guidelines

There are three general coding paradigms that we believe in:



	Keep it simple. We believe that “Programs should be written for people to read, and only incidentally for
machines to execute.”.

	Keep it documented by at least including a docstring for each method and class. Do not describe what you are
doing but why you are doing it.

	Keep it tested. We aim for a high test coverage.






There are two important copyright guidelines:



	Please do not include any data sets for which a licence is not available or commercial use is even prohibited. Those
can undermine the licence of the whole projects.

	Do not use code snippets for which a licence is not available (e.g. from stackoverflow) or commercial use is
even prohibited. Those can undermine the licence of the whole projects.






Further, there are some technical decisions we made:



	Clear the Output of iPython notebooks. This improves the readability of related Git diffs.









Testing setup

After making your changes, you probably want to test your changes locally. To run our comprehensive suite of unit tests
you have to install all the relevant python packages with

cd /path/to/tsfresh
pip install -r requirements.txt
pip install -r rdocs-requirements.txt
pip install -r test-requirements.txt
pip install -e .





The last command will dynamically link the tsfresh package which means that changes to the code will directly show up
for example in your test run.

Then, if you have everything installed, you can run the tests with

python setup.py test





or build the documentation with

python setup.py docs





The finished documentation can be found in the docs/_build/html folder.

On Github we use a Travis CI Folder that runs our test suite every time a commit or pull request is sent. The
configuration of Travi is controlled by the .travis.yml [https://github.com/blue-yonder/tsfresh/blob/master/.travis.yml]
file.

We are looking forward to hear from you! =)
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Submodules




tests.conftest module


System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/checkouts/v0.7.0/docs/api/tests.rst, line 10)

autodoc: failed to import module u’tests.conftest’; the following exception was raised:
Traceback (most recent call last):
  File “/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/envs/v0.7.0/local/lib/python2.7/site-packages/sphinx/ext/autodoc.py”, line 551, in import_object
    __import__(self.modname)
ImportError: No module named tests.conftest





tests.fixtures module


System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/checkouts/v0.7.0/docs/api/tests.rst, line 18)

autodoc: failed to import module u’tests.fixtures’; the following exception was raised:
Traceback (most recent call last):
  File “/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/envs/v0.7.0/local/lib/python2.7/site-packages/sphinx/ext/autodoc.py”, line 551, in import_object
    __import__(self.modname)
ImportError: No module named tests.fixtures





tests.test_feature_significance module


System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/checkouts/v0.7.0/docs/api/tests.rst, line 26)

autodoc: failed to import module u’tests.test_feature_significance’; the following exception was raised:
Traceback (most recent call last):
  File “/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/envs/v0.7.0/local/lib/python2.7/site-packages/sphinx/ext/autodoc.py”, line 551, in import_object
    __import__(self.modname)
ImportError: No module named tests.test_feature_significance





Module contents


System Message: WARNING/2 (/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/checkouts/v0.7.0/docs/api/tests.rst, line 35)

autodoc: failed to import module u’tests’; the following exception was raised:
Traceback (most recent call last):
  File “/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/envs/v0.7.0/local/lib/python2.7/site-packages/sphinx/ext/autodoc.py”, line 551, in import_object
    __import__(self.modname)
ImportError: No module named tests








          

      

      

    

  _images/math/cebb5d23eabfc313f83d0412aaa5fea91f03f142.png





_images/math/07445f97f28cc79550545416545a10512a185d4d.png
mean(X ) — median(X)| < r * (max(X) — min(X))





_images/math/601b9b7c601391ec84e17752d09b08677876acb6.png
Pk





_images/math/f2d283a2071f9d043c9e0b0f794a8880fa0d3ce9.png





_images/math/1df834cf3edfba1a99715efde488206b7532d8be.png





_images/math/6f61d332b185269debe4c74b2dc79d32fff87a53.png





_images/math/e11f2701c4a39c7fe543a6c4150b421d50f1c159.png





_images/math/08134a4ac6af8f901ab17d934849cf0a89131022.png





_images/ts_example_robot_failures_nofail.png
10

10

12

12

Time series for id=3 (no failure)

™ b

20
10

O~

1 0 2 4 6 8 10 122 u

1 0 2 4 6 8 10 122 u

100

8

10

10

12

12

“

“





_images/math/2fd0b3e3fa1b9c370bd7c96e6ee6dedb374407c6.png





_images/math/7a3d0c9264473a58cc3a769f99a662631131377c.png





_images/ts_example_robot_failures_fail.png
Time series for id=20 (failure)

™ b

20
10

0

100

- B8 & 8 8

8





_images/introduction_ts_exa_features.png
Max

16.0

Number Peaks

15.5
150
145

Median

140
Mean
135
13.0

125

120

o Min

o0 o o
o o R





_images/feature_extraction_process_20160815_mc_1.png
Raw time series.

p-values Aggregated

Selected

features

features

Sample 1

Sample m

Sample 1

Sample m

Feature
significance
hypothesis
tests

Benjamini
Yekutieli
procedure

Time series type 1 Time series type 2 Time series type n






nav.xhtml

    
      Table of Contents


      
        		tsfresh


        		Introduction
          
          		Why do you need such a module?


          		What to do with these features?


          		What not to do with tsfresh?


          		What else is out there?


          


        


        		Quick Start
          
          		Install tsfresh


          		Dive in


          


        


        		Module Reference
          
          		tsfresh package
            
            		Subpackages


            		Module contents


            


          


          


        


        		Data Formats
          
          		Input Option 1. Flat DataFrame


          		Input Option 2. Stacked DataFrame


          		Input Option 3. Dictionary of flat DataFrames


          		Output Format


          


        


        		scikit-learn Transformers
          
          		Example


          		References


          


        


        		Feature Calculation
          
          		Overview on extracted feature


          		Feature naming


          		Examples for feature naming


          


        


        		Feature Filtering
          
          		Phase 1 - Feature extraction


          		Phase 2 - Feature significance testing


          		Phase 3 - Multiple test procedure


          		References


          


        


        		How to write custom Feature Calculators
          
          		Step 1. Decide which type of feature you want to implement


          		Step 2. Write the feature calculator


          		Step 3. Add custom settings for your feature


          


        


        		Parallelization
          
          		Parallelization of Feature Selection


          		Parallelization of Feature Extraction


          


        


        		How to handle rolling time series


        		FAQ


        		Authors
          
          		Development Lead


          		Contributions


          


        


        		License


        		Changelog
          
          		Version 0.7.0


          		Version 0.6.0


          		Version 0.5.0


          		Version 0.4.0


          		Version 0.3.1


          		Version 0.3.0


          		Version 0.2.0


          		Version 0.1.2


          		Version 0.1.1


          		Version 0.1.0


          


        


        		How to contribute
          
          		Guidelines


          		Testing setup


          


        


      


    
  

_images/math/0ec85677a38098d2878e196ee09f35b72b5223fa.png





_images/math/460c9e60b45a467b8103aae7d01cee841aac5cd9.png





_images/introduction_ts_exa.png
16.0

155

150

&%

&

o

&

&

o






_images/math/a3965ac90c9513644606210339d525386626dcb2.png





_images/math/8fac41d28eed741316e15357d9fa4b93c21e3b22.png





_images/math/929828003d21836b7ed01e8ecd150780de4fc9e5.png
[Tk, Th—1, Th—2, ..., T1]





_images/math/ae2b750f71e1fc0daaa3de9a85d42794d7cd1326.png





_images/math/1e428b09ff639573e581d71a1f22dbfa32af784c.png





_images/math/c9820d077cdfb73342278fcc33004ce7dac66f5f.png
1

1
=D DI R SRS
n 2






_images/math/9a63346d0b18c3361d2ba446d7c9e7cf831d8c4d.png





_static/ajax-loader.gif





_images/math/42e3fc0fc55e062ea147b72669dc07cf9e7e2483.png
‘min(maz bins,len(z))

- > Prlog(pe) - 1,50

rard





_static/up.png





_static/comment-bright.png





_static/file.png





_images/math/590da761ad7dc3cea32756fc232185cd32a391d6.png





_images/math/908802a646a69f8414f225d4703cb20014d4297f.png
1,09, T3, ..., Tp|





_images/math/d58f2bf8e2fbdf8aa73d825975e15993763dd18e.png
==

PORERE

=11






_static/comment-close.png





_images/math/7437889983f132223fc1b0a95b11249cef677416.png
lag

2 2
> itag * Titlag — Tittag - 7
=

o
n— 2lag





_static/down.png





_images/math/40805bea42d6f4ef764dca8bf9e6b7356aa4b76a.png





_images/math/bd9d9c7512c898e0a254a0882184197bc1bd9c9f.png





_images/math/b50b9d98bff7af8530c0d97b915c210d556249ef.png





_images/math/ff55478e4de2f5ae30a992e92f32b8667f2b20e6.png
stdlx) = r * (mazr(X) —min(X))





_static/minus.png





_static/up-pressed.png





_images/math/6a395e092c600a3f7de07c5f3cb04fd9b6b91392.png





_images/math/ea0a2344ecdd1f7d3454ccc5c51a4138b1dac082.png
H{ = (Tteature=1 # Teature—0)





_images/math/375aef16039b90f09b39513dedeb604d89653778.png
Flarget=0)





_images/math/a59f68a4202623bb859a7093f0316bf466e6f75d.png





_images/math/18461bc18e5a163beda70528f71c7c9c0cfe7410.png





_images/math/0b7c1e16a3a8a849bb8ffdcdbf86f65fd1f30438.png





_images/math/d79e8a2c7ce54906c2b25549da38bdbe02cf40d6.png





_images/math/df0deb143e5ac127f00bd248ee8001ecae572adc.png





_images/math/616be2b4cf07a242a3f4131fdf92580227f5661e.png





_images/math/abf2a495924d423bfae0ffb1047b51a2f576e405.png





_static/comment.png





_static/plus.png





_static/down-pressed.png





