tsfresh.examples package
Submodules
tsfresh.examples.driftbif_simulation module
- tsfresh.examples.driftbif_simulation.load_driftbif(n, length, m=2, classification=True, kappa_3=0.3, seed=False)[source]
Simulates n time-series with length time steps each for the m-dimensional velocity of a dissipative soliton
classification=True: target 0 means tau<=1/0.3, Dissipative Soliton with Brownian motion (purely noise driven) target 1 means tau> 1/0.3, Dissipative Soliton with Active Brownian motion (intrinsiv velocity with overlaid noise)
classification=False: target is bifurcation parameter tau
- Parameters:
n (int) – number of samples
length (int) – length of the time series
m (int) – number of spatial dimensions (default m=2) the dissipative soliton is propagating in
classification (bool) – distinguish between classification (default True) and regression target
kappa_3 (float) – inverse bifurcation parameter (default 0.3)
seed (float) – random seed (default False)
- Returns:
X, y. Time series container and target vector
- Rtype X:
pandas.DataFrame
- Rtype y:
pandas.DataFrame
- tsfresh.examples.driftbif_simulation.sample_tau(n=10, kappa_3=0.3, ratio=0.5, rel_increase=0.15)[source]
Return list of control parameters
- Parameters:
n (int) – number of samples
kappa_3 (float) – inverse bifurcation point
ratio (float) – ratio (default 0.5) of samples before and beyond drift-bifurcation
rel_increase (float) – relative increase from bifurcation point
- Returns:
tau. List of sampled bifurcation parameter
- Rtype tau:
list
- class tsfresh.examples.driftbif_simulation.velocity(tau=3.8, kappa_3=0.3, Q=1950.0, R=0.0003, delta_t=0.05, seed=None)[source]
Bases:
object
Simulates the velocity of a dissipative soliton (kind of self organized particle) [6]. The equilibrium velocity without noise R=0 for $ au>1.0/kappa_3$ is $kappa_3 sqrt{(tau - 1.0/kappa_3)/Q}. Before the drift-bifurcation $ au le 1.0/kappa_3$ the velocity is zero.
References
>>> ds = velocity(tau=3.5) # Dissipative soliton with equilibrium velocity 1.5e-3 >>> print(ds.label) # Discriminating before or beyond Drift-Bifurcation 1
# Equilibrium velocity >>> print(ds.deterministic) 0.0015191090506254991
# Simulated velocity as a time series with 20000 time steps being disturbed by Gaussian white noise >>> v = ds.simulate(20000)
tsfresh.examples.har_dataset module
This module implements functions to download and load the Human Activity Recognition dataset [4]. A description of the data set can be found in [5].
References
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. (2013) A Public Domain Dataset for Human Activity Recognition Using Smartphones. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.
- tsfresh.examples.har_dataset.download_har_dataset(folder_name='/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/envs/stable/lib/python3.10/site-packages/tsfresh/examples/data/UCI HAR Dataset')[source]
Download human activity recognition dataset from UCI ML Repository and store it at /tsfresh/notebooks/data.
Examples
>>> from tsfresh.examples import har_dataset >>> har_dataset.download_har_dataset()
tsfresh.examples.robot_execution_failures module
This module implements functions to download the Robot Execution Failures LP1 Data Set [1], [2], [3] and load it as as DataFrame.
Important: You need to download the data set yourself, either manually or via the function
download_robot_execution_failures()
References
https://archive.ics.uci.edu/ml/datasets/Robot+Execution+Failures
Lichman, M. (2013). UCI Machine Learning Repository [https://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
Camarinha-Matos, L.M., L. Seabra Lopes, and J. Barata (1996). Integration and Learning in Supervision of Flexible Assembly Systems. “IEEE Transactions on Robotics and Automation”, 12 (2), 202-219
- tsfresh.examples.robot_execution_failures.download_robot_execution_failures(file_name='/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/envs/stable/lib/python3.10/site-packages/tsfresh/examples/data/robotfailure-mld/lp1.data')[source]
Download the Robot Execution Failures LP1 Data Set[#1] from the UCI Machine Learning Repository [#2] and store it locally.
- Returns:
Examples
>>> from tsfresh.examples import download_robot_execution_failures >>> download_robot_execution_failures()
- tsfresh.examples.robot_execution_failures.load_robot_execution_failures(multiclass=False, file_name='/home/docs/checkouts/readthedocs.org/user_builds/tsfresh/envs/stable/lib/python3.10/site-packages/tsfresh/examples/data/robotfailure-mld/lp1.data')[source]
Load the Robot Execution Failures LP1 Data Set[1]. The Time series are passed as a flat DataFrame.
Examples
>>> from tsfresh.examples import load_robot_execution_failures >>> df, y = load_robot_execution_failures() >>> print(df.shape) (1320, 8)
- Parameters:
multiclass (bool) – If True, return all target labels. The default returns only “normal” vs all other labels.
- Returns:
time series data as
pandas.DataFrame
and target vector aspandas.Series
- Return type:
tuple
Module contents
Module with exemplary data sets to play around with.
See for eample the Quick Start section on how to use them.