How to add a custom feature¶
It may be beneficial to add a custom feature to those that are calculated by tsfresh. To do so, one has to follow four simple steps:
Step 1. Decide which type of feature you want to implement¶
In tsfresh we differentiate between two types of feature calculation methods
1. simple
2. combiner
The difference lays in the number of calculated features for a singular time series. The feature_calculator returns either one (1.) or multiple features (2.). So if you want to add a singular feature stick with 1., the simple feature calculator class. If it is beneficial to calculate multiples features at the same time (to e.g. perform auxiliary calculations only once for all features), stick with type 2..
Step 2. Write the feature calculator¶
Depending on which type of feature you are implementing, you can use the following feature calculator skeletons:
1. simple features¶
You can write such a simple feature calculator, that returns exactly one feature, without parameter
from tsfresh.feature_extraction.feature_calculators import set_propert
@set_property("fctype", "simple")
def your_feature_calculator(x):
"""
The description of your feature
:param x: the time series to calculate the feature of
:type x: pandas.Series
:return: the value of this feature
:return type: bool, int or float
"""
# Calculation of feature as float, int or bool
f = f(x)
return f
or with parameter
@set_property("fctype", "simple"")
def your_feature_calculator(x, p1, p2, ...):
"""
Description of your feature
:param x: the time series to calculate the feature of
:type x: pandas.Series
:param p1: description of your parameter p1
:type p1: type of your parameter p1
:param p2: description of your parameter p2
:type p2: type of your parameter p2
...
:return: the value of this feature
:return type: bool, int or float
"""
# Calculation of feature as float, int or bool
f = f(x)
return f
2. combiner features¶
@set_property("fctype", "combiner")
def your_feature_calculator(x, param):
"""
Description of your feature
:param x: the time series to calculate the feature of
:type x: pandas.Series
:param c: the time series name
:type c: str
:param param: contains dictionaries {"p1": x, "p2": y, ...} with p1 float, p2 int ...
:type param: list
:return: list of tuples (s, f) where s are the parameters, serialized as a string,
and f the respective feature value as bool, int or float
:return type: pandas.Series
"""
# s is a function that serializes the config
# f is a function that calculates the feature value for the config
return [(s(config), f(x, config)) for config in param]
After implementing the feature calculator, please add it to the tsfresh.feature_extraction.feature_calculators
submodule. tsfresh will only find feature calculators that are in this submodule.
Writing your own time-based feature calculators¶
Writing your own time-based feature calculators is no different from usual. Only two new properties must be set using the @set_property decorator:
- Adding
@set_property("input", "pd.Series")
tells the function that the input of the function is apd.Series
rather than anumpy
array. This allows the index to be used. - Adding
@set_property("index_type", pd.DatetimeIndex)
tells the function that the input is a DatetimeIndex, allowing it to perform calculations based on time datatypes.
For example, if we want to write a function that calculates the time between the first and last measurement, it could look something like this:
@set_property("input", "pd.Series")
@set_property("index_type", pd.DatetimeIndex)
def timespan(x, param):
ix = x.index
# Get differences between the last timestamp and the first timestamp in seconds,
# then convert to hours.
times_seconds = (ix[-1] - ix[0]).total_seconds()
return times_seconds / float(3600)
Step 3. Add custom settings for your feature¶
Finally, you have to add custom settings if your feature is a simple or combiner feature with parameters. To do so,
just append your feature with sane default parameters to the name_to_param
dictionary inside the
tsfresh.feature_extraction.settings.ComprehensiveFCParameters
constructor:
name_to_param.update({
# here are the existing settings
...
# Now the settings of your feature calculator
"your_feature_calculator" = [{"p1": x, "p2": y, ...} for x,y in ...],
})
That is it, tsfresh will calculate your feature the next time you run it.
Please make sure, that the different feature extraction settings
(e.g. tsfresh.feature_extraction.settings.EfficientFCParameters
,
tsfresh.feature_extraction.settings.MinimalFCParameters
or
tsfresh.feature_extraction.settings.ComprehensiveFCParameters
) do include different sets of
feature calculators to use. You can control, which feature extraction settings object will include your new
feature calculator by giving your function attributes like “minimal” or “high_comp_cost”. Please see the
classes in tsfresh.feature_extraction.settings
for more information.
Step 4. Add a pull request¶
We would very happy if you contribute your implemented features to tsfresh. So make sure to create a pull request at our github page. We happily accept partly implemented feature calculators, which we can finalize collaboratively.